SYMPOSIUM ON INFECTIOUS AGENTS IN A MULTIDRUG RESISTANT GLOBE |
|
|
|
Year : 2010 | Volume
: 2
| Issue : 3 | Page : 263-274 |
|
Extended-spectrum ß-lactamases in gram negative bacteria |
|
Deepti Rawat1, Deepthi Nair2
1 Department of Microbiology, Maulana Azad Medical College, New Delhi, India 2 Department of Microbiology,Vardhaman Mahavir Medical College & Safdarjang Hospital, New Delhi, India
Click here for correspondence address and email
Date of Web Publication | 17-Aug-2010 |
|
|
 |
|
Abstract | | |
Extended-spectrum ß-lactamases (ESBLs) are a group of plasmid-mediated, diverse, complex and rapidly evolving enzymes that are posing a major therapeutic challenge today in the treatment of hospitalized and community-based patients. Infections due to ESBL producers range from uncomplicated urinary tract infections to life-threatening sepsis. Derived from the older TEM is derived from Temoniera, a patient from whom the strain was first isolated in Greece. ß-lactamases, these enzymes share the ability to hydrolyze third-generation cephalosporins and aztreonam and yet are inhibited by clavulanic acid. In addition, ESBL-producing organisms exhibit co-resistance to many other classes of antibiotics, resulting in limitation of therapeutic option. Because of inoculum effect and substrate specificity, their detection is also a major challenge. At present, however, organizations such as the Clinical and Laboratory Standards Institute (formerly the National Committee for Clinical Laboratory Standards) provide guidelines for the detection of ESBLs in Klebsiella pneumoniae, K. oxytoca, Escherichia coli and Proteus mirabilis. In common to all ESBL-detection methods is the general principle that the activity of extended-spectrum cephalosporins against ESBL-producing organisms will be enhanced by the presence of clavulanic acid. Carbapenems are the treatment of choice for serious infections due to ESBL-producing organisms, yet carbapenem-resistant isolates have recently been reported. ESBLs represent an impressive example of the ability of gram-negative bacteria to develop new antibiotic-resistance mechanisms in the face of the introduction of new antimicrobial agents. Thus there is need for efficient infection-control practices for containment of outbreaks; and intervention strategies, e.g., antibiotic rotation to reduce further selection and spread of these increasingly resistant pathogens. Keywords: Extended-spectrum ß-lactamases, Gram negative bacteria (GNB) and Antimicrobial resistance
How to cite this article: Rawat D, Nair D. Extended-spectrum ß-lactamases in gram negative bacteria. J Global Infect Dis 2010;2:263-74 |
Introduction | |  |
Extended-spectrum ß-lactamases (ESBLs) are a rapidly evolving group of ß-lactamases which share the ability to hydrolyze third-generation cephalosporins and aztreonam but are inhibited by clavulanic acid. They represent the first example in which ß-lactamase-mediated resistance to ß-lactam antibiotics resulted from fundamental changes in the substrate spectra of the enzymes. [1]
The total number of ESBLs now characterized exceeds 200. These are detailed on the authoritative website on the nomenclature of ESBLs hosted by George Jacoby and Karen Bush ( http://www.lahey.org/studies/webt.htm ). Published research on ESBLs has now originated from more than 30 different countries, reflecting the truly worldwide distribution of ESBL-producing organisms.
Enterobacteriaceae, especially Klebsiella spp.-producing ESBLs such as SHV and TEM types, have been established since the 1980s as a major cause of hospital-acquired infections. However, during the late 1990s, several community-acquired pathogens that commonly cause urinary tract infections and diarrhea have also been found to be ESBL producers. These include Escherichia More Details coli, Salmonella More Details, Shigella and Vibrio cholerae.[2],[3],[4]
ESBLs are often encoded by genes located on large plasmids, and these also carry genes for resistance to other antimicrobial agents such as aminoglycosides, trimethoprim, sulphonamides, tetracyclines and chloramphenicol. [5] Recent studies have demonstrated fluoroquinolone resistance mediated by co-transfer of the qnr determinant on ESBL-producing plasmids. [6],[7] Thus, very broad antibiotic resistance extending to multiple antibiotic classes is now a frequent characteristic of ESBL-producing enterobacterial isolates. As a result, ESBL-producing organisms pose a major problem for clinical therapeutics. This review attempts to present a comprehensive picture on the basis of the currently available literature about this diverse, complex and rapidly evolving group of enzymes.
Resistance to ß-Lactams | |  |
ß-Lactams are a group of antibiotics acting on the cell wall of a bacterial cell. These include the penicillins, cephalosporins, carbapenems and monobactems. These bind to and inhibit the carboxypeptidases and transpeptidases. These are the cell wall synthesizing enzymes, also called the penicillin-binding proteins, or PBPs, that catalyze the D-ala D-ala cross linkages of the peptidoglycan wall that surrounds the bacterium. As a result, there is weakening of the cell wall structure, leading to cell lysis.
Resistance to ß-lactams has probably arisen throughout bacterial history but has become a useful and therefore selected trait since the ß-lactam antibiotics came into clinical use. These drugs exerted a Darwinian selection, killing susceptible bacteria and allowing the resistant ones to survive.
Resistance to ß-lactams may be inherent to a particular species, as seen in enterococci, which have inherently insensitive PBPs. Alternately, it may be acquired through spontaneous mutation or DNA transfer. Functionally, ß-lactam resistance may be a result of the production of ß-lactamases, impermeability, efflux and target modification. These modalities may occur singly or in different combinations.
The most common causes of resistance in gram-positive cocci like pneumococci and MRSA are changes in the normal PBPs or acquisition of additional ß-lactam-insensitive PBPs. However, in the gram-negative bacteria, resistance is mostly due to a combination of endogenous acquired ß-lactamases, along with natural up-regulated impermeability and efflux. [8]
Definition of Extended-Spectrum ß-Lactamases | |  |
There is no consensus on the precise definition of ESBLs. A commonly used working definition is that, ESBLs are ß-lactamases capable of conferring bacterial resistance to the penicillins; first-, second- and third-generation cephalosporins; and aztreonam (but not the cephamycins or carbapenems) by hydrolysis of these antibiotics, and which are inhibited by ß-lactamase inhibitors such as clavulanic acid. [2]
The Ambler molecular classification and the Bush-Jacoby-Medeiros functional classification are the two most commonly used classification systems for ß-lactamases. [9],[10],[11] Ambler scheme divides ß-lactamases into four major classes (A to D). The basis of this classification scheme rests upon protein homology (amino acid similarity) and not phenotypic characteristics. In the Ambler classification scheme, ß-lactamases of classes A, C and D are serine ß-lactamases. In contrast, the class B enzymes are metallo-ß-lactamases. With the exception of OXA-type enzymes (which are class D enzymes), the ESBLs are of molecular class A.
The Bush-Jacoby-Medeiros classification scheme groups ß-lactamases according to functional similarities (substrate and inhibitor profile). There are four main groups and multiple subgroups in this system. This classification scheme is of much more immediate relevance to the physician or microbiologist in a diagnostic laboratory because it considers ß-lactamase and ß-lactam substrates that are clinically relevant. In this classification, ESBLs belong to group 2be or group 2d (OXA-type), the latter sharing most of the fundamental properties of group 2be enzymes though differing in being inhibitor resistant. [10]
The 2be designation shows that these enzymes are derived from group 2b ß-lactamases (for example, TEM-1, TEM-2 and SHV-1); the 'e' of 2be denotes that the ß-lactamases have an extended spectrum. The ESBLs derived from TEM-1, TEM-2 or SHV-1 differ from their progenitors by as few as one amino acid. This results in a profound change in the enzymatic activity of the ESBLs, so that they can now hydrolyze the third-generation cephalosporins or aztreonam (hence the extension of spectrum compared to the parent enzymes).
Inhibition by ß-lactamase inhibitors such as clavulanic acid and inability to hydrolyze cephamycins differentiates the ESBLs from the AmpC-type ß-lactamases (group 1), which have third-generation cephalosporins as their substrates but which are not inhibited by clavulanic acid. Selection of stably de-repressed mutants which hyperproduce the AmpC-type ß-lactamases has been associated with clinical failure when third-generation cephalosporins are used to treat serious infections with organisms producing these enzymes. [12],[13],[14] In general, the fourth-generation cephalosporin, cefepime, is clinically useful against organisms producing AmpC-type ß-lactamases [15] but may be less useful in treating ESBL-producing organisms. [16] Additionally, the metalloenzymes (group 3) produced by organisms such as Stenotrophomonas maltophilia can hydrolyze third-generation cephalosporins (and carbapenems) but are inhibited by ethylenediaminetetraacetic acid (EDTA),a heavy-metal chelator but not clavulanic acid. [17]
Evolution and Dissemination of ESBLS | |  |
ß-lactamases may be chromosomally encoded and universally present in a species or plasmid mediated. The chromosomal enzymes are believed to have evolved from PBPs with which they show same-sequence homology. This was probably a result of the selective pressure exerted by ß-lactam-producing soil organisms found in the environment. [18]
The first plasmid-mediated ß-lactamase in gram-negative bacteria TEM 1 was described in the early 1960s. [18] It was so designated as it was isolated from the blood culture of a named Temoniera in Greece. Being plasmid and transposon mediated, TEM-1 enzymes spread worldwide and are now found in many different species of the family Enterobacteriaceae, Pseudomonas aeruginosa, Hemophilus influenza and Neissiria gonorrhea. SHV-1 (for sulphydral variable type 1) is another ß-lactamase commonly found in Klebsiella and Escherichia coli. Over the years, the use of newer ß-lactam antibiotics has enabled selection of new variants of ß-lactamases.
In the early 1980s, the third-generation, or oxy-imino, cephalosporins were introduced into clinical practice in response to the increasing prevalence and spread of the ß-lactamases. Resistance to these extended-spectrum cephalosporins emerged quickly, and the first report of an SHV-2 enzyme which was capable of hydrolyzing these antibiotics was published as early as 1983 from Germany.
These enzymes were called extended-spectrum ß-lactamases because of their increased spectrum of activity, especially against the oxyimino cephalosporins. There are several groups of ESBLs with similar behavior but different evolutionary histories The largest groups are the mutants of TEM and SHV ß-lactamases, with over 150 members. The mutations which affect a small number of critical amino acids enlarge the enzyme's active site and enable it to deflect the oxyimino substitutes, which normally shield the ß-lactam ring. As a result, whereas the classical TEM and SHV enzymes are unable to significantly hydrolyze the oxyimino cephalosporins, the mutants can do so, conferring resistance to their host strains. [8]
The second largest group of ESBLs is the CTX-M enzymes. Based on sequence homology, these are divided into five subgroups with around 40 members. Most of these subgroups have evolved as a result of the chromosomal ß-lactamase genes escaping from Kluvera spp., an enterobacterial genus of little clinical importance. Having migrated to mobile DNA, the CTX-M ß-lactamases may evolve further. Enterobacteriaceae (mostly Escherichia coli) producing the CTX-M enzymes have been identified, predominantly from the community, as a cause of urinary tract infections. [2],[3],[4] Various reports suggest that the CTX-M-type ESBLs may now actually be the most frequent ESBL type worldwide. [8]
The OXA-type ß-lactamases (group 2d) are so named because of their oxacillin-hydrolyzing abilities. They predominantly occur in Pseudomonas aeruginosa[19] but have been detected in many other gram-negative bacteria. [20] The OXA-type ESBLs were originally discovered in Pseudomonas aeruginosa isolates from Turkey. The evolution of ESBL OXA-type ß-lactamases from parent enzymes with narrower spectra has many parallels with the evolution of SHV- and TEM-type ESBLs. OXA-10 hydrolyzes (weakly) cefotaxime, ceftriaxone and aztreonam, giving most organisms reduced susceptibility to these antibiotics; but OXA-11, -14, -16, -17, -19, -15, -18, -28, -31, -32, -35 and -45 confer frank resistance to cefotaxime and sometimes ceftazidime and aztreonam. [21-26] The simultaneous production of a carbapenem-hydrolyzing metalloenzyme and an aztreonam-hydrolyzing OXA enzyme can readily lead to resistance to all ß-lactam antibiotics. [26]
A variety of other ß-lactamases (PER, VEB, GES.BES.TLA, SFO, IBC groups) which are plasmid-mediated or integron-associated class A enzymes have been discovered. [27],[28],[29],[30],[31],[32],[33],[34],[35],[36] They are not simple point-mutant derivatives of any known ß-lactamases and have been found in a wide range of geographic locations. Novel chromosomally encoded ESBLs have also been described. [37]
Methods for ESBL Detection | |  |
ESBL testing involves two important steps. The first is a screening test with an indicator cephalosporin which looks for resistance or diminished susceptibility, thus identifying isolates likely to be harboring ESBLs. The second one tests for synergy between an oxyimino cephalosporin and clavulanate, distinguishing isolates with ESBLs from those that are resistant for other reasons.
Screening for ESBL producers
Disk-Diffusion methods
The Clinical and Laboratory Standards Institute (CLSI) has proposed disk-diffusion methods for screening for ESBL production by Klebsiellae pneumoniae, K. oxytoca, Escherichia coli and Proteus mirabilis. Laboratories using disk-diffusion methods for antibiotic susceptibility testing can screen for ESBL production by noting specific zone diameters which indicate a high level of suspicion for ESBL production. Cefpodoxime, ceftazidime, aztreonam, cefotaxime or ceftriaxone disks are used. Since the affinity of ESBLs for different substrates is variable, the use of more than one of these agents for screening improves the sensitivity of detection. [38] However, it is adequate to use cefotaxime, which is consistently susceptible to CTX-M; and ceftazidime, which is a consistently good substrate for TEM and SHV variants. If only one drug can be used, then the single best indicator has been found to be cefpodoxime. [8],[39],[40] However, it has been seen that susceptibility testing with cefpodoxime can lead to a high number of false-positive results which can be due to mechanisms other than ESBL production. [8]
If isolates show resistance or diminished susceptibility to any of these five agents, it indicates suspicion for ESBL production, and phenotypic confirmatory tests should be used to ascertain the diagnosis.
Screening by dilution antimicrobial susceptibility yests
The CLSI has proposed dilution methods for screening for ESBL production by Klebsiellae pneumoniae and K oxytoca, Escherichia coli and Proteus mirabilis. Ceftazidime, aztreonam, cefotaxime or ceftriaxone can be used at a screening concentration of 1 μg/mL or cefpodoxime at a concentration of 1 μg/mL for Proteus mirabilis; or 4 μg/mL, for the others. Growth at or above this screening antibiotic concentration is suspicious of ESBL production and is an indication for the organism to be tested by a phenotypic confirmatory test. [38]
Phenotypic Confirmatory Tests for ESBL Production | |  |
Cephalosporin/clavulanate combination disks
The CLSI advocates use of cefotaxime (30 μg) or ceftazidime (30 μg) disks with or without clavulanate (10 μg) for phenotypic confirmation of the presence of ESBLs in Klebsiellae and Escherichia coli, P. mirabilis and Salmonella species. The CLSI recommends that the disk tests be performed with confluent growth on Mueller-Hinton agar. A difference of ≥5 mm between the zone diameters of either of the cephalosporin disks and their respective cephalosporin/ clavulanate disks is taken to be phenotypic confirmation of ESBL production. [38]
For Enterobacter spp. C freundii, Morganella, Providentia and Serratia spp., it is better to use cefepime or cefpirome in the confirmatory tests as they are less prone to attack by the chromosomal AmpC beta lactamases, which may be induced by clavulanate in these species. [8]
Broth microdilution
Phenotypic confirmatory testing can also be performed by broth microdilution assays using ceftazidime (0.25-128 μg/mL), ceftazidime plus clavulanic acid (0.25/4 - 128/4 μg/mL), cefotaxime (0.25-64 μg/mL), or cefotaxime plus clavulanic acid (0.25/4 - 64/4 μg/mL). [41] Broth microdilution is performed using standard methods. Phenotypic confirmation is considered as ≥3 twofold serial-dilution decreases in minimum inhibitory concentration (MIC) of either cephalosporin in the presence of clavulanic acid compared to its MIC when tested alone.
Steward and colleagues [39] suggested using cefoxitin susceptibility in isolates with positive screening tests but negative confirmatory tests as a means of deducing the mechanism of resistance. ESBL-producing isolates appear susceptible, while those with plasmid AmpC enzymes are resistant. However, resistance to cefoxitin seems to be increasing in ESBL-producing isolates due to efflux or permeability changes or coexistence of ESBLs with AmpC enzymes. The usefulness of this screen test may thus be diminishing.
Quality control when performing screening and phenotypic confirmatory tests
Quality control recommendations are that simultaneous testing with a non-ESBL-producing organism (Escherichia coli ATCC 25922) and an ESBL-producing organism (Klebsiella pneumoniae ATCC 700603) also be performed. [38]
Implications of positive phenotypic confirmatory tests
According to CLSI guidelines, isolates which have a positive phenotypic confirmatory test should be reported as resistant to all cephalosporins (except the cephamycins, cefoxitin and cefotetan) and aztreonam, regardless of the MIC of that particular cephalosporin. Penicillins (for example, piperacillin or ticarcillin) are reported as resistant regardless of MIC, but ß-lactam/ ß-lactamase inhibitor combinations (for example, ticarcillin-clavulanate or piperacillin-tazobactam) are reported as susceptible if MICs or zone diameters are within the appropriate range.
Other Methods Available for ESBL Detection | |  |
Several other tests have been developed to confirm the presence of ESBLs.
Double-disk synergy test
In this, test disks of third-generation cephalosporins and augmentin are kept 30 mm apart, center to center, on inoculated Mueller-Hinton agar (MHA). [40] A clear extension of the edge of the inhibition zone of cephalosporin towards augmentin disk is interpreted as positive for ESBL production. Evaluations of the double-disk diffusion test have revealed sensitivities of the method ranging from 79% to 97% and specificities ranging from 94% to 100%. [42],[43],[44],[45],[46] While the double-disk diffusion test is technically simple, the interpretation of the test is quite subjective. Sensitivity may be reduced when ESBL activity is very low, leading to wide zones of inhibition around the cephalosporin and aztreonam disks, especially for Proteus mirabilis.[47] False-negative results have been observed with isolates harboring SHV-2, [42],[45] SHV-3 [43] or TEM-12. [46] In isolates which are suspicious for harboring ESBLs but are negative using the standard distance of 30 mm between disks, the test should be repeated using closer (for example, 20 mm) or more distant (for example, 40 mm) spacing. [43],[45]
A falsely positive test occurs for organisms such as Stenotrophomonas maltophilia because aztreonam is not a substrate for the metalloenzymes, and clavulanic acid inhibits other ß-lactamases produced by this organism. [48]
Three-dimensional test
The three-dimensional test gives phenotypic evidence of ESBL-induced inactivation of extended-spectrum cephalosporins or aztreonam without relying on demonstration of inactivation of the ß-lactamases by a ß-lactamase inhibitor. [45] In this test, the surface of the susceptibility plate is inoculated by standard methods for disk-diffusion testing, but additionally a circular slit is cut in the agar concentric with the margin of the plate. A heavy inoculum of the test organism (10 9 to 10 10 CFU of cells) is pipetted into the slit. ß-lactam-impregnated disks are then placed on the surface of the agar 3 mm outside of the inoculated circular slit. ß-lactamase-induced inactivation of each test antibiotic is detected by inspection of the margin of the zone of inhibition in the vicinity of its intersection with the circular three-dimensional inoculation. The presence of ß-lactamase-induced drug inactivation is visualized as a distortion or discontinuity in the usually circular inhibition zone or as the production of discrete colonies in the vicinity of the inoculated slit.
Inhibitor-potentiated disk-diffusion test
Antibiotic disks containing ceftazidime (30 μg), cefotaxime (30 μg), ceftriaxone (30 μg) and aztreonam (30 μg) are placed on the clavulanate-containing agar plates and regular clavulanate-free Mueller-Hinton agar plates. [43] A difference in ß-lactam zone width of ≥10 mm in the two media was considered positive for ESBL production. A major drawback of the method is the need to freshly prepare clavulanate-containing plates. The potency of clavulanic acid begins to decrease after 72 hours.
Cephalosporin/clavulanate combination disks on iso-sensitest agar
The British Society for Antimicrobial Chemotherapy has recommended the disk-diffusion method for phenotypic confirmation of ESBL presence using ceftazidime-clavulanate and cefotaxime-clavulanate combination disks, with semiconfluent growth on Iso-Sensitest agar (rather than confluent growth on Mueller-Hinton agar). A ratio of cephalosporin/clavulanate zone size to cephalosporin zone size of 1.5 or greater was taken to signify the presence of ESBL activity. Using this method, the sensitivity of the test for detecting ESBLs was 93% using both ceftazidime and cefotaxime. The test did not detect ESBL production by strains producing SHV-6. [49]
Disk approximation test
Cefoxitin (inducer) disk is placed at a distance of 2.5 cm from cephalosporin disk. [47] Production of inducible ß-lactamase is indicated by flattening of the zone of inhibition of the cephalosporin disk towards inducer disk by >1 mm.
Commercially Available Methods for ESBL Detection | |  |
Vitek ESBL test
A specific card which includes tests for ESBL production has now been FDA approved. The Vitek ESBL test (bioMerieux Vitek, Hazelton, Missouri) utilizes cefotaxime and ceftazidime, alone (at 0.5 μg/mL) and in combination with clavulanic acid (4 μg/mL). Inoculation of the cards is identical to that performed for regular Vitek cards. Analysis of all wells is performed automatically once the growth control well has reached a set threshold (4-15 hours of incubation). A predetermined reduction in the growth of the cefotaxime or ceftazidime wells containing clavulanic acid, compared with the level of growth in the well with the cephalosporin alone, indicates presence of ESBL. Sensitivity and specificity of the method exceed 90%. [50]
E Test
The E test ESBL strip (AB Biodisk, Solna, Sweden) carries two gradients: on the one end, ceftazidime; and on the opposite end, ceftazidime plus clavulanic acid. [46] MIC is interpreted as the point of intersection of the inhibition ellipse with the E test strip edge. A ratio of ceftazidime MIC to ceftazidime-clavulanic acid MIC equal to or greater than 8 indicates the presence of ESBL. The reported sensitivity of the method as a phenotypic confirmatory test for ESBLs is 87% to 100%, [43],[46],[51] and the specificity is 95% to 100%. The availability of cefotaxime strips, as well as ceftazidime strips, improves the ability to detect ESBL types, which preferentially hydrolyze cefotaxime, such as CTX-M-type enzymes. [2]
MicroScan panels
MicroScan panels (Dade Behring MicroScan, Sacramento, CA.) comprise dehydrated panels for microdilution antibiotic susceptibility. Those used for ESBL detection which contain combinations of ceftazidime or cefotaxime plus ß-lactamase inhibitors have received Food and Drug Administration approval; and in studies of large numbers of ESBL-producing isolates, they have appeared to be highly reliable. [52],[53],[54]
Becton Dickinson (BD) Phoenix Automated Microbiology System
Becton Dickinson Biosciences (Sparks, Md) have introduced a short-incubation system for bacterial identification and susceptibility testing, known as BD Phoenix. [55],[56],[57] The Phoenix ESBL test uses growth response to cefpodoxime, ceftazidime, ceftriaxone and cefotaxime, with or without clavulanic acid, to detect the production of ESBLs. The test algorithm has been delineated by Sanguinetti et al.[56] Results are usually available within 6 hours. The BD Phoenix ESBL detection method detected ESBL production in greater than 90% of strains genotypically confirmed to produce ESBLs. The method correctly detected ESBL production by Enterobacter, Proteus and Citrobacter spp., in addition to Klebsiellae and Escherichia coli.[56]
Problems in Detection | |  |
Identifying ESBL-producing organisms is a major challenge for the clinical microbiology laboratory. Multiple factors contribute to this, including production of multiple different ß-lactamase types by a single bacterial isolate and the production of ESBLs by organisms that constitutively produce the AmpC ß-lactamases, varying substrate affinities and the inoculum effect.
The phenotypic confirmatory tests are highly sensitive and specific compared to genotypic confirmatory tests. However, there are a number of instances whereby the phenotypic confirmatory tests may be falsely positive or negative.
Klebsiella pneumoniae or Escherichia coli isolates which lack ESBLs but which hyperproduce SHV-1 may give false-positive confirmatory test results. Such isolates can have ceftazidime MICs as high as 32 μg/mL. [58],[59],[60]
There are now numerous reports in which Klebsiella pneumoniae isolates have been found to harbor plasmid-mediated AmpC-type ß-lactamases. Some of these organisms have been found to harbor both AmpC-type ß-lactamases and ESBLs. [61] The coexistence of both enzyme types in the same strain not only results in elevated cephalosporin MICs but may also give false-negative test results for the detection of ESBLs. The likely explanation is that AmpC-type ß-lactamases resist inhibition by clavulanate and hence obscure the synergistic effect of clavulanate and cephalosporins against ESBLs.
For ESBL-producing bacteria, there is a dramatic rise of MIC for extended-spectrum cephalosporins as the inoculum is increased beyond that used in routine susceptibility tests. Same isolates test susceptible at the standard inoculum and resistant at a higher inoculum. Therefore, false-negative results can occur with both screening and confirmatory tests when lower inocula are used. [41],[62]
Some ESBL isolates may appear susceptible to a third-generation cephalosporin in vitro, particularly if relatively high breakpoints are used. However, treatment of infections due to an ESBL-producing organism with third-generation cephalosporins may result in clinical failure even when the MIC is below the breakpoint and the ability of these enzymes to confer resistance to weak-substrate cephalosporins is clear when MIC determinations are performed with heavy inoculum. This may be due to the variable affinity of these enzymes for different substrates and inoculum effect. [63]
Many ESBL producers are resistant to combinations despite appearing sensitive in vitro. This could be due to hyperproduction so that the inhibitor is overwhelmed, relative impermeability of the host or co-production of inhibitor-resistant penicillanases (e.g., OXA-1).
Since ESBL production is usually plasmid mediated, it is possible for one specimen to contain both ESBL-producing and non-ESBL-producing cells of the same species. This suggests that for optimal detection, several colonies must be tested from a primary culture plate. [64]
ESBL enzymes can be induced by certain antibiotics, amino acids or body fluids. Organisms possessing genes for inducible ß-lactamases show false susceptibility if tested in the uninduced state. [47]
All these factors make detection of ESBLs a complicated and complex task, and improvements in the ability of clinical laboratories to detect ESBL are needed.
Two opposing viewpoints have arisen in recognition of the poor outcome when patients with an infection due to an ESBL-producing organism are treated with a cephalosporin to which it appears susceptible in vitro. Some investigators believe that alteration of cephalosporin breakpoints for Enterobacteriaceae by organizations such as the Clinical and Laboratory Standards Institute is a more appropriate endeavor than expanding efforts to detect ESBLs, which is too complex a task for a clinical microbiology laboratory. An advantage of such a change would be that organisms such as Enterobacter spp., which are not currently considered in CLSI guidelines for ESBL detection, would be covered. [2]
Another viewpoint is that the inoculum effect is important for ESBL-producing organisms. In vitro, the MICs of cephalosporins rise as the inoculum of ESBL-producing organisms increases. [65],[66],[67],[68] Thus in the presence of high-inoculum infections (for example, intra-abdominal abscess, some cases of pneumonia) or infections at sites in which drug penetration may be poor (for example, meningitis, endocarditis or osteomyelitis), physicians should avoid cephalosporins if an ESBL-producing organism is present. Also severity of illness could have been greater in patients infected with organisms with higher MICs.
A point favoring efforts aimed at ESBL detection is the infection control significance of detecting plasmid-mediated multi-drug resistance. There are epidemiologic implications for the detection of ESBL-producing organisms, as the significance of this resistance may not be as apparent if organisms are simply reported as intermediate or resistant to individual cephalosporins. Outbreaks of ESBL-producing organisms can be abruptly halted using appropriate infection-control interventions. Endemic transmission of ESBL producers can also be curtailed using infection-control measures and antibiotic management interventions. Detection of ESBL production in organisms from samples such as urine may be important because this represents an epidemiologic marker of colonization (and therefore the potential for transfer of such organisms to other patients).
Risk Factors | |  |
Patients at high risk for developing colonization or infection with ESBL-producing organisms are often seriously ill patients with prolonged hospital stays and in whom invasive medical devices are present (urinary catheters, endotracheal tubes, central venous lines) for a prolonged duration. [2] In addition, other risk factors have been found in individual studies, including the presence of nasogastric tubes, [69] gastrostomy or jejunostomy tubes [70],[71] or arterial lines; [72],[73] administration of total parenteral nutrition, [73] recent surgery, [74] hemodialysis, [75] decubitus ulcers [71] and poor nutritional status. [76]
Heavy antibiotic use is also a risk factor for acquisition of an ESBL-producing organism. [73],[77],[78] Several studies have found a relationship between third-generation cephalosporin use and acquisition of an ESBL-producing strain. [69],[70],[77],[78],[79],[80],[81],[82],[83],[84],[85],[86] However, perhaps the greatest risk factor for nosocomial acquisition of an ESBL-producing organism is accommodation in a ward or room with other patients with ESBL-producing organisms. [8]
Risk factors for colonization or infection with ESBL-producing organisms, especially the CTX-M producers, include history of recent hospitalization; treatment with cephalosporins, penicillins and quinolones; age 65 years or higher; dementia: and diabetes. [2] Although there is no conclusive evidence, one potential source of colonization with the ESBL producers in the community may be the use of veterinary oxyimino cephalosporins like ceftiofur in livestock. [8]
Treatment Options | |  |
The factors which determine the choice of antibiotics and other management options include a) site of infection; b) severity of infection; c) presence of a prosthetic device or implant; d) metabolic parameters - liver and renal function; e) patient-related factors such as age, pregnancy, lactation. [87] The therapeutic options for ESBL-producing organisms are very limited. ESBLs confer on them the ability to be resistant to most ß-lactam antibiotics except cephamycins and carbapenems. In addition, the plasmids bearing genes-encoding ESBLs frequently also carry genes encoding resistance to other antimicrobial agents, such as aminoglycosides, trimethoprim, sulphonamides, tetracyclines and chloramphenicol. [5],[8]
There have also been increasing reports of plasmid-encoded decrease in susceptibility to quinolones, frequently in association with plasmid-mediated cephalosporin resistance. [88],[89],[90],[91] There appears to be a strong association between quinolone resistance and ESBL production, [2],[92],[93],[94],[95] even in the absence of plasmid-encoded decrease in quinolone susceptibility, although the reason for this association is not well understood. Fluoroquinolones may be used for the treatment of uncomplicated urinary tract infections (UTIs) when found to be susceptible, although increasing in vitro resistance of ESBL producers to quinolones will limit the role of these antibiotics in the future. Studies have found carbapenems to be superior to quinolones for treatment of serious infections caused by ESBL-producing organisms. [96],[97]
Some infections due to organisms testing resistant to ceftazidime but susceptible to cefotaxime or ceftriaxone have responded to treatment with these alternate cephalosporins. However, MICs of these agents rise dramatically as the inoculum is increased. [98]
Thus isolates giving a positive synergy test are inferred to have ESBLs, and all cephalosporins should be avoided as therapy, irrespective of susceptibility results.
Cefamycins, such as cefoxitin and cefotetan, although active in vitro, are not recommended for treating such infections, because of the relative ease with which these strains decrease the expression of outer membrane proteins, rendering them resistant. [98],[99]
Although ESBL activity is inhibited by clavulanic acid, ß-lactam/ ß-lactamase inhibitor combinations are not considered optimal therapy for serious infections due to ESBL producers as their clinical effectiveness against serious infections due to ESBL-producing organisms is controversial. [2] The majority of ESBL-producing organisms produce more than one ß-lactamase, often in different amounts. Additionally, it is well known that ESBL-producing organisms may continue to harbor parent enzymes (for example, SHV-1 or TEM-1). Hyperproduction of these non-ESBL-producing ß-lactamases [100] or the combination of ß-lactamase production and porin loss can also lead to a reduction in activity of ß-lactamase inhibitors.
Also ß-lactam/ ß-lactamase inhibitor combinations are subject to rising MICs as inoculum rises. [101] As a result, infections with high organism burden (intra-abdominal collections, sepsis) may be associated with sufficient ß-lactamase production to overcome the effects of the ß-lactamase inhibitor. However, they may be useful for less serious infections, such as uncomplicated non-bacteremic lower urinary tract infection, because the infection is localized and the antibiotic is excreted in large amounts through the urine. [87] They have also been found to be a good option for the treatment of uncomplicated community-acquired infections due to ESBL producers, especially since they have the advantage of oral administration. [102] The advantages of using ß-lactamase inhibitors is that by inhibiting ESBLs they appear to impair the emergence and spread of Klebsiella-carrying resistance plasmids. Furthermore, administration of inhibitors may exert in vitro pressure on ESBLs, thereby facilitating their reverse mutation to less harmful enzymes. [98]
There is also concern that misuse of carbapenems in uncomplicated cases will result in carbapenem resistance. Thus the therapeutic potions are limited to carbapenems, colistin, polymyxin, temocillin, tigecycline for serious infections. However uncomplicated infections like non-bacteremic urinary tract infections can be managed with a variety of antibiotics, depending on their susceptibility. These include oral antibiotics like trimethoprim, nitrofurantoin, fosfomycin, co-amoxiclav, mecillinam; or intravenous agents like aminoglycoside (gentamicin, amikacin) and inhibitor combinations. [87],[102] Among these carbapenems are the drugs of choice for serious infections with ESBL producers. Imipenem and meropenem are preferred in nosocomial infections, while etrapenam is preferred in community-acquired infections. [103]
Although in vitro studies have demonstrated no synergy, additivity or antagonism in combination therapy (carbapenem + aminoglycoside), the bactericidal activity of imipenem in combination with amikacin was found to be greater than that of imipenem alone. This was due to the faster killing rates of amikacin. [87] Thus carbapenems may be combined with a second agent (amikacin) for the first few days in the treatment of life-threatening infections like septicemia, hospital-acquired pneumonia, intra-visceral abscesses. [87] Tigecycline, temocillin, colistin and polymyxin are reserved for patients resistant to all of the other antibiotics, including the carbapenems.
Prevention and Control | |  |
Proper infection-control practices and barriers are essential to prevent spreading and outbreaks of ESBL-producing bacteria. The reservoir for these bacteria seems to be the gastrointestinal tract of patients. [99] Alternative reservoirs could be the oropharynx, colonized wounds and urine. The contaminated hands and stethoscopes of healthcare providers are important factors in spreading infection between patients. [99] Essential infection-control practices should include avoiding unnecessary use of invasive devices such as indwelling urinary catheters or IV lines, hand washing by hospital personnel, increased barrier precautions, and isolation of patients colonized or infected with ESBL producers.
At an institutional level, practices that can minimize the spread of such organisms include clinical and bacteriological surveillance of patients admitted to intensive care units and antibiotic cycling; as well as policies of restriction, especially on the empirical use of broad-spectrum antimicrobial agents such as the third- and fourth-generation cephalosporins and quinolones. [2],[87],[99]
Some authors have suggested that use of ß-lactam/ ß-lactamase inhibitor combinations, rather than cephalosporins, as workhorse empirical therapy for infections suspected as being due to gram-negative bacilli, may facilitate control of ESBL producers. [104],[105],[106] However, many organisms now produce multiple ß-lactamases, which may reduce the effectiveness of ß-lactam/ ß-lactamase inhibitor combinations. [107],[108],[109],[110]
Conclusions | |  |
Clinically, ESBLs limit the efficacy of ß-lactams. including extended-spectrum cephalosporins, and are associated with high morbidity and mortality. Moreover, the indiscriminate use of carbapenems may select resistance to these key drugs, thus sowing seeds for significant therapeutic problems to arise in the future. There is no doubt that the ESBLs are becoming increasingly complex and diverse and their detection is becoming increasingly challenging for clinical microbiology laboratories. Thus there is need for efficient infection-control practices for containment of outbreaks; and intervention strategies, e.g., antibiotic rotation, to reduce further selection and spread of these increasingly resistant pathogens.
References | |  |
1. | Philippon A, Labia R, Jacoby G. Extended-spectrum beta-lactamases. Antimicrob Agents Chemother 1989;33:1131-6. |
2. | Paterson DL, Bonomo RA. Extended-spectrum ί-lactamases: A clinical update. Clin Microbiol Rev 2005;18:657-86. |
3. | Pitout JD, Nordmann P, Kevin B, Laupland KB, Poirel L. Emergence of Enterobacteriaceae producing extended-spectrum ί-lactamases (ESBLs) in the community. J Antimicrob Chemother 2005;56:52-9. |
4. | Doi Y, Adams J, O′Keefe A, Quereshi Z, Ewan L, Paterson DL. Community-acquired extended-spectrum b-lactamase producers, United States [letter]. Emerg Infect Dis [serial on the Internet]. Available from: http://www.cdc.gov/EID/content/13/7/1121.htm [last cited on 2007]. |
5. | Paterson DL. Recommendation for treatment of severe infections caused by Enterobacteriaceae producing extended-spectrum ί-lactamases (ESBLs). Clin Microbiol Infect 2000;6:460-3. |
6. | Mammeri H, Van De Loo M, Poirel L, Martinez-Martinez L, Nordmann P. Emergence of plasmid-mediated quinolone resistance in Escherichia coli in Europe. Antimicrob Agents Chemother 2005;49:71-6. |
7. | Wang M, Sahm DF, Jacoby GA, Hooper DC. Emerging plasmid-mediated quinolone resistance associated with the qnr gene in Klebsiella pneumoniae clinical isolates in the United States. Antimicrob Agents Chemother 2004;48:1295-9. |
8. | Livermoore DM, Paterson DL. Pocket guide to extended spectrum ί-lactamases in resistance. New Delhi: Springer (India) Private Limited; 2006. |
9. | Ambler RP, Coulson AF, Frere JM, Ghuysen JM, Joris B, Forsman M, et al. A standard numbering scheme for the class A beta-lactamases. Biochem J 1991;276:269-70. |
10. | Bush K, Jacoby GA, Medeiros AA. A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother 1995;39:1211-33. |
11. | Rasmussen BA, Bush K. Carbapenem-hydrolyzing beta-lactamases. Antimicrob Agents Chemother 1997;41:223-32. |
12. | Chow JW, Fine MJ, Shlaes DM, Quinn JP, Hooper DC, Johnson MP, et al. Enterobacter bacteremia: Clinical features and emergence of antibiotic resistance during therapy. Ann Intern Med 1991;115:585-90. |
13. | Cosgrove SE, Kaye KS, Eliopoulous GM, Carmeli Y. Health and economic outcomes of the emergence of third-generation cephalosporin resistance in Enterobacter species. Arch Intern Med 2002;162:185-90. |
14. | Kaye KS, Cosgrove S, Harris A, Eliopoulos GM, Carmeli Y. Risk factors for emergence of resistance to broad-spectrum cephalosporins among Enterobacter spp. Antimicrob Agents Chemother 2001;45:2628-30. |
15. | Sanders CC. In vitro activity of fourth generation cephalosporins against enterobacteriaceae producing extended-spectrum beta-lactamases. J Chemother 1996;8:57-62. |
16. | Yuan M, Aucken H, Hall LM, Pitt TL, Livermore DM. Epidemiological typing of klebsiellae with extended-spectrum beta-lactamases from European intensive care units. J Antimicrob Chemother 1998;41:527-39. |
17. | Wachino J, Doi Y, Yamane K, Shibata N, Yagi T, Kubota T, et al. Nosocomial spread of ceftazidime-resistant Klebsiella pneumoniae strains producing a novel class a beta-lactamase, GES-3, in a neonatal intensive care unit in Japan. Antimicrob Agents Chemother 2004;48:1960-7. |
18. | Bradford PA. Extended-spectrum-lactamases in the 21 st century: Characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev 2001;14:933-51. |
19. | Weldhagen GF. Sequence-selective recognition of extended-spectrum beta-lactamase GES-2 by a competitive, peptide nucleic acid-based multiplex PCR assay. Antimicrob Agents Chemother 2004;48:3402-6. |
20. | Livermore DM. Beta-lactamases in laboratory and clinical resistance. Clin Microbiol Rev 1995;8:557-84. |
21. | Danel F, Hall LM, Duke B, Gur D, Livermore DM. OXA-17, a further extended-spectrum variant of OXA-10 beta-lactamase, isolated from Pseudomonas aeruginosa. Antimicrob Agents Chemother 1999;43:1362-6. |
22. | Danel F, Hall LM, Gur D, Livermore DM. OXA-14, another extended-spectrum variant of OXA-10 (PSE-2) beta-lactamase from Pseudomonas aeruginosa. Antimicrob Agents Chemother 1995;39:1881-4. |
23. | Danel F, Hall LM, Gur D, Livermore DM. OXA-15, an extended-spectrum variant of OXA-2 beta-lactamase, isolated from a Pseudomonas aeruginosa strain. Antimicrob Agents Chemother 1997;41:785-90. |
24. | Danel F, Hall LM, Gur D, Livermore DM. OXA-16, a further extended-spectrum variant of OXA-10 beta-lactamase, from two Pseudomonas aeruginosa isolates. Antimicrob Agents Chemother 1998;42:3117-22. |
25. | Hall LM, Livermore DM, Gur D, Akova M, Akalin HE. OXA-11, an extended-spectrum variant of OXA-10 (PSE-2) beta-lactamase from Pseudomonas aeruginosa. Antimicrob Agents Chemother 1993;37:1637-44. |
26. | Toleman MA, Rolston K, Jones RN, Walsh TR. Molecular and biochemical characterization of OXA-45, an extended-spectrum class 2d′ beta-lactamase in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2003;47:2859-63. |
27. | Bauernfeind A, Stemplinger I, Jungwirth R, Mangold P, Amann S, Akalin E, et al. Characterization of beta-lactamase gene blaPER-2, which encodes an extended-spectrum class A beta-lactamase. Antimicrob Agents Chemother 1996;40:616-20. |
28. | Nordmann P, Naas T. Sequence analysis of PER-1 extended-spectrum beta-lactamase from Pseudomonas aeruginosa and comparison with class A beta-lactamases. Antimicrob Agents Chemother 1994;38:104-14. |
29. | Bonnet R, Sampaio JL, Chanal C, Sirot D, De Champs C, Viallard JL, et al. A novel class A extended-spectrum beta-lactamase (BES-1) in Serratia marcescens isolated in Brazil. Antimicrob Agents Chemother 2000;44:3061-8. |
30. | Giakkoupi P, Tzouvelekis LS, Tsakris A, Loukova V, Sofianou D, Tzelepi E. IBC-1, a novel integron-associated class A beta-lactamase with extended-spectrum properties produced by an Enterobacter cloacae clinical strain. Antimicrob Agents Chemother 2000;44:2247-53. |
31. | Matsumoto Y, Inoue M. Characterization of SFO-1, a plasmid-mediated inducible class A beta-lactamase from Enterobacter cloacae. Antimicrob Agents Chemother 1999;43:307-13. |
32. | Mavroidi A, Tzelepi E, Tsakris A, Miriagou V, Sofianou D, Tzouvelekis LS. An integron-associated beta-lactamase (IBC-2) from Pseudomonas aeruginosa is a variant of the extended-spectrum beta-lactamase IBC-1. J Antimicrob Chemother 2001;8:627-30. |
33. | Poirel L, Le Thomas I, Naas T, Karim A, Nordmann P. Biochemical sequence analyses of GES-1, a novel class A extended-spectrum beta-lactamase, and the class 1 integron In52 from Klebsiella pneumoniae. Antimicrob Agents Chemother 2000;44:622-32. |
34. | Poirel L, Naas T, Guibert M, Chaibi EB, Labia R, Nordmann P. Molecular and biochemical characterization of VEB-1, a novel class A extended-spectrum beta-lactamase encoded by an Escherichia coli integron gene. Antimicrob Agents Chemother 1999;43:573-81. |
35. | Poirel L, Weldhagen GF, Naas T, De Champs C, Dove MG, Nordmann P. GES-2, a class A beta-lactamase from Pseudomonas aeruginosa with increased hydrolysis of imipenem. Antimicrob Agents Chemother 2001;45:2598-603. |
36. | Silva J, Aguilar C, Ayala G, Estrada MA, Garza-Ramos U, Lara-Lemus R, et al. TLA-1: A new plasmid-mediated extended-spectrum beta-lactamase from Escherichia coli. Antimicrob Agents Chemother 2000;44:997-1003. |
37. | Bellais S, Poirel L, Fortineau N, Decousser JW, Nordmann P. Biochemical-genetic characterization of the chromosomally encoded extended-spectrum class A beta-lactamase from Rahnella aquatilis. Antimicrob Agents Chemother 2001;45:2965-8. |
38. | CLSI. Performance Standards for Antimicrobial Susceptibility Testing: Nineteeneth Informational Supplement. CLSI document M100-S19. Wayne PA: Clinical and Laboratory Standards Institute; 2009. |
39. | Steward CD, Rasheed JK, Hubert SK, Biddle JW, Raney PM, Anderson GJ, et al. Characterization of clinical isolates of Klebsiella pneumoniae from 19 laboratories using the National Committee for Clinical Laboratory Standards extended-spectrum beta-lactamase detection methods. J Clin Microbiol 2001;39:2864-72. |
40. | Jarlier V, Nicolas MH, Fournier G, Philippon A. ESBLs conferring transferable resistance to newer-lactam agents in Enterobacteriaceae: Hospital prevalence and susceptibility patterns. Rev Infect Dis 1988;10:867-78. |
41. | Queenan AM, Foleno B, Gownley C, Wira E, Bush K. Effects of inoculum and beta-lactamase activity in AmpC- and extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli and Klebsiella pneumoniae clinical isolates tested by using National Committee for Clinical Laboratory Standards ESBL methodology. J Clin Microbiol 2004;42:269-75. |
42. | Randegger C, Boras A, Haechler H. Comparison of five different methods for detection of SHV extended-spectrum beta-lactamases. J Chemother 2001;13:24-33. |
43. | Ho PL, Chow KH, Yuen KY, Ng WS, Chau PY. Comparison of a novel, inhibitor-potentiated disc-diffusion test with other methods for the detection of extended-spectrum beta-lactamases in Escherichia coli and Klebsiella pneumoniae. J Antimicrob Chemother 1998;42:49-54. |
44. | MacKenzie FM, Miller CA, Gould IM. Comparison of screening methods for TEM- and SHV-derived extended-spectrum beta-lactamase detection. Clin Microbiol Infect 2002;8:715-24. |
45. | Thomson KS, Sanders CC. Detection of extended-spectrum beta-lactamases in members of the family Enterobacteriaceae: Comparison of the double-disk and three-dimensional tests. Antimicrob Agents Chemother 1992;36:1877-82. |
46. | Vercauteren E, Descheemaeker P, Ieven M, Sanders CC, Goossens H. Comparison of screening methods for detection of extended-spectrum beta-lactamases and their prevalence among blood isolates of Escherichia coli and Klebsiella spp. in a Belgian teaching hospital. J Clin Microbiol 1997;35:2191-7. |
47. | Revathi G, Singh S. Detection of expanded spectrum cephalosporin resistance due to inducible lactamases in hospital isolates. Indian J Med Microbiol 1997;15:113-5. |
48. | Munoz Bellido JL, Garcia-Rodriguez JA. Aztreonam-clavulanic acid synergy does not mean extended-spectrum beta-lactamase in Stenotrophomonas maltophilia. J Antimicrob Chemother 1998;41:493-4. |
49. | M′Zali FH, Chanawong A, Kerr KG, Birkenhead D, Hawkey PM. Detection of extended-spectrum beta-lactamases in members of the family enterobacteriaceae: Comparison of the MAST DD test, the double disc and the Etest ESBL. J Antimicrob Chemother 2000;45:881-5. |
50. | Sanders CC, Barry AL, Washington JA, Shubert C, Moland ES, Traczewski MM, et al. Detection of extended-spectrum-beta-lactamase-producing members of the family Enterobacteriaceae with Vitek ESBL test. J Clin Microbiol 1996;34:2997-3001. |
51. | Cormican MG, Marshall SA, Jones RN. Detection of extended-spectrum beta-lactamase (ESBL)-producing strains by the Etest ESBL screen. J Clin Microbiol 1996;34:1880-4. |
52. | Komatsu M, Aihara M, Shimakawa K, Iwasaki M, Nagasaka Y, Fukuda S, et al. Evaluation of MicroScan ESBL confirmation panel for Enterobacteriaceae-producing, extended-spectrum beta-lactamases isolated in Japan. Diagn Microbiol Infect Dis 2003;46:125-30. |
53. | Pagani L, Migliavacca R, Pallecchi L, Matti C, Giacobone E, Amicosante G, et al. Emerging extended-spectrum beta-lactamases in Proteus mirabilis. J Clin Microbiol 2002;40:1549-52. |
54. | Paterson DL, Yu VL. Extended-spectrum beta-lactamases: A call for improved detection and control. Clin Infect Dis 1999;29:1419-22. |
55. | Leverstein-van Hall MA, Fluit AC, Paauw A, Box AT, Brisse S, Verhoef J. Evaluation of the Etest ESBL and the BD Phoenix, VITEK 1, and VITEK 2 automated instruments for detection of extended-spectrum beta-lactamases in multiresistant Escherichia coli and Klebsiella spp. J Clin Microbiol 2002;40:3703-11. |
56. | Sanguinetti M, Posteraro B, Spanu T, Ciccaglione D, Romano L, Fiori B, et al. Characterization of clinical isolates of Enterobacteriaceae from Italy by the BD Phoenix extended-spectrum beta-lactamase detection method. J Clin Microbiol 2003;41:1463-8. |
57. | Sturenburg E, Sobottka I, Feucht HH, Mack D, Laufs R. Comparison of BDPhoenix and VITEK2 automated antimicrobial susceptibility test systems for extended-spectrum beta-lactamase detection in Escherichia coli and Klebsiella species clinical isolates. Diagn Microbiol Infect Dis 2003;45:29-34. |
58. | Miro E, del Cuerpo M, Navarro F, Sabate M, Mirelis B, Prats G. Emergence of clinical Escherichia coli isolates with decreased susceptibility to ceftazidime and synergic effect with co-amoxiclav due to SHV-1 hyperproduction. J Antimicrob Chemother 1998;42:535-8. |
59. | Petit A, Ben Yaghlane-Bouslama H, Sofer L, Labia R. Does high level production of SHV-type penicillinase confer resistance to ceftazidime in Enterobacteriaceae? FEMS Microbiol Lett 1992;71:89-94. |
60. | Rice LB, Carias LL, Hujer AM, Bonafede M, Hutton R, Hoyen C, et al. High-level expression of chromosomally encoded SHV-1 beta-lactamase and an outer membrane protein change confer resistance to ceftazidime and piperacillin-tazobactam in a clinical isolate of Klebsiella pneumoniae. Antimicrob Agents Chemother 2000;44:362-7. |
61. | Tzouvelekis LS, Vatopoulos AC, Katsanis G, Tzelepi E. Rare case of failure by an automated system to detect extended-spectrum beta-lactamase in a cephalosporin-resistant Klebsiella pneumoniae isolate. J Clin Microbiol 1999;37:2388. |
62. | Emery CL, Weymouth LA. Detection and clinical significance of ES Ls in a tertiary - care medical center. J Clin Microbiol 1997;35:2061-7. |
63. | Nathisuwan S, Burgess DS, Lewis II JS. ESBLs: Epidemiology, detection and treatment. Pharmacotherapy 2001;21:920-8. |
64. | Coudron PE, Moland ES, Sanders CC. Occurrence and detection of ESBL in members of the family Enterobacteriacieae at a veterans medical center: Seek and you may find. J Clin Microbiol 1997;35:2593-7. |
65. | Jett BD, Ritchie DJ, Reichley R, Bailey TC, Sahm DF. In vitro activities of various beta-lactam antimicrobial agents against clinical isolates of Escherichia coli and Klebsiella spp. resistant to oxyimino cephalosporins. Antimicrob Agents Chemother 1995;39:1187-90. |
66. | Medeiros AA, Crellin J. Comparative susceptibility of clinical isolates producing extended spectrum beta-lactamases to ceftibuten: Effect of large inocula. Pediatr Infect Dis J 1999;16:S49-55. |
67. | Rice LB, Yao JD, Klimm K, Eliopoulos GM, Moellering RC Jr. Efficacy of different beta-lactams against an extended-spectrum beta-lactamase-producing Klebsiella pneumoniae strain in the rat intra-abdominal abscess model. Antimicrob Agents Chemother 1991;35:1243-4. |
68. | Thauvin-Eliopoulos C, Tripodi MF, Moellering Jr RC, Eliopoulos GM. Efficacies of piperacillin-tazobactam and cefepime in rats with experimental intra-abdominal abscesses due to an extended-spectrum beta-lactamase-producing strain of Klebsiella pneumoniae. Antimicrob Agents Chemother 1997;41:1053-7. |
69. | Asensio A, Oliver A, Gonzalez-Diego P, Baquero F, Perez-Diaz JC, Ros P, et al. Outbreak of a multiresistant Klebsiella pneumoniae strain in an intensive care unit: Antibiotic use as risk factor for colonization and infection. Clin Infect Dis 2000;30:55-60. |
70. | Schiappa DA, Hayden MK, Matushek MG, Hashemi FN, Sullivan J, Smith KY, et al. Ceftazidime-resistant Klebsiella pneumoniae and Escherichia coli bloodstream infection: A case-control and molecular epidemiologic investigation. J Infect Dis 1996;174:529-36. |
71. | Weldhagen GF, Prinsloo A. Molecular detection of GES-2 extended spectrum beta-lactamase producing Pseudomonas aeruginosa in Pretoria, South Africa. Int J Antimicrob Agents 2004;24:35-8. |
72. | Lucet JC, Chevret S, Decre D, Vanjak D, Macrez A, Bedos JP, et al. Outbreak of multiply resistant enterobacteriaceae in an intensive care unit: Epidemiology and risk factors for acquisition. Clin Infect Dis 1996;22:430-6. |
73. | Pena C, Pujol M, Ricart A, Ardanuy C, Ayats J, Linares J, et al. Risk factors for faecal carriage of Klebsiella pneumoniae producing extended spectrum beta-lactamase (ESBL-KP) in the intensive care unit. J Hosp Infect 1997;35:9-16. |
74. | de Champs C, Sirot D, Chanal C, Poupart MC, Dumas MP, Sirot J. Concomitant dissemination of three extended-spectrum beta-lactamases among different Enterobacteriaceae isolated in a French hospital. J Antimicrob Chemother 1991;27:441-57. |
75. | Crowley BD. Extended-spectrum beta-lactamases in blood culture isolates of Klebsiella pneumoniae: Seek and you may find! J Antimicrob Chemother 2001;47:728-9. |
76. | Mangeney N, Niel P, Paul G, Faubert E, Hue S, Dupeyron C, et al. A 5-year epidemiological study of extended-spectrum beta-lactamase-producing Klebsiella pneumoniae isolates in a medium- and long-stay neurological unit. J Appl Microbiol 2000;88:504-11. |
77. | Ariffin H, Navaratnam P, Mohamed M, Arasu A, Abdullah WA, Lee CL, et al. Ceftazidime-resistant Klebsiella pneumoniae bloodstream infection in children with febrile neutropenia. Int J Infect Dis 2000;4:21-5. |
78. | Lautenbach E, Patel JB, Bilker WB, Edelstein PH, Fishman NO. Extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae: Risk factors for infection and impact of resistance on outcomes. Clin Infect Dis 2001;32:1162-71. |
79. | Du B, Long Y, Liu H, Chen D, Liu D, Xu Y, et al. Extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae bloodstream infection: Risk factors and clinical outcome. Intensive Care Med 2002;28:1718-23. |
80. | Eveillard M, Schmit JL, Eb F. Antimicrobial use prior to the acquisition of multiresistant bacteria. Infect Control Hosp Epidemiol 2002;23:155-8. |
81. | Ho PL, Chan WM, Tsang KW, Wong SS, Young K. Bacteremia caused by Escherichia coli producing extended-spectrum beta-lactamase: A case-control study of risk factors and outcomes. Scand J Infect Dis 2002;34:567-73. |
82. | Kim BN, Woo JH, Kim MN, Ryu J, Kim YS. Clinical implications of extended-spectrum beta-lactamase-producing Klebsiella pneumoniae bacteraemia. J Hosp Infect 2002;52:99-106. |
83. | Kim YK, Pai H, Lee HJ, Park SE, Choi EH, Kim J, et al. Bloodstream infections by extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in children: Epidemiology and clinical outcome. Antimicrob Agents Chemother 2002;46:1481-91. |
84. | Lee SO, Lee ES, Park SY, Kim SY, Seo Y, Cho YK. Reduced use of third-generation cephalosporins decreases the acquisition of extended-spectrum beta-lactamase-producing Klebsiella pneumoniae. Infect Control Hosp Epidemiol 2004;25:832-7, |
85. | Paterson DL, Ko WC, Von Gottberg A, Mohapatra S, Casellas JM, Goossens H, et al. International prospective study of Klebsiella pneumoniae bacteremia: Implications of extended-spectrum beta-lactamase production in nosocomial infections. Ann Intern Med 2004;140:26-32. |
86. | Pessoa-Silva CL, Meurer Moreira B, Camara Almeida V, Flannery B, Almeida Lins MC, Mello Sampaio JL, et al. Extended-spectrum beta-lactamase-producing Klebsiella pneumoniae in a neonatal intensive care unit: Risk factors for infection and colonization. J Hosp Infect 2003;53:198-206. |
87. | Bhattacharya S. ESBL-From petri dish to the patient. Indian J Med Microbiol 2006;24:20-4. [PUBMED] |
88. | Jacoby GA, Chow N, Waites KB. Prevalence of plasmid-mediated quinolone resistance. Antimicrob Agents Chemother 2003;47:559-62. |
89. | Mammeri H, Van De Loo M, Poirel L, Martinez-Martinez L, Nordmann P. Emergence of plasmid-mediated quinolone resistance in Escherichia coli in Europe. Antimicrob Agents Chemother 2005;49:71-6. |
90. | Martinez-Martinez L, Pascual A, Jacoby GA. Quinolone resistance from a transferable plasmid. Lancet 1998;351:797-9. |
91. | Wang H, Kelkar S, Wu W, Chen M, Quinn JP. Clinical isolates of Enterobacteriaceae producing extended-spectrum beta-lactamases: Prevalence of CTX-M-3 at a hospital in China. Antimicrob Agents Chemother 2003;47:790-3. |
92. | Babini GS, Livermore DM. Antimicrobial resistance amongst Klebsiella spp. collected from intensive care units in Southern and Western Europe in 1997-1998. J Antimicrob Chemother 2000;45:183-9. |
93. | Brisse S, Milatovic D, Fluit AC, Verhoef J, Schmitz FJ. Epidemiology of quinolone resistance of Klebsiella pneumoniae and Klebsiella oxytoca in Europe. Eur J Clin Microbiol Infect Dis 2000;19:64-8. |
94. | Lautenbach E, Strom BL, Bilker WB, Patel JB, Edelstein PH, Fishman NO. Epidemiological investigation of fluoroquinolone resistance in infections due to extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae. Clin Infect Dis 2001;33:1288-94. |
95. | Paterson DL, Mulazimoglu L, Casellas JM, Ko WC, Goossens H, Von Gottberg A, et al. Epidemiology of ciprofloxacin resistance and its relationship to extended-spectrum beta-lactamase production in Klebsiella pneumoniae isolates causing bacteremia. Clin Infect Dis 2000;30:473-8. |
96. | Endimiani A, Luzzaro F, Perilli M, Lombardi G, Coli A, Tamborini A, et al. Bacteremia due to Klebsiella pneumoniae isolates producing the TEM-52 extended-spectrum beta-lactamase: Treatment outcome of patients receiving imipenem or ciprofloxacin. Clin Infect Dis 2004;38:243-51. |
97. | Paterson DL, Ko WC, Gottberg A Von, Mohapatra S, Casellas JM, Goossens H, et al. Antibiotic therapy for Klebsiella pneumoniae bacteremia: Implications of production of extended-spectrum beta-lactamases. Clin Infect Dis 2004;39:31-7. |
98. | Chaudhary U, Aggarwal R. Extended spectrum ί lactamases (ESBL) - An emerging threat to clinical therapeutics. Indian J Med Microbiol 2004;22:75-80. [PUBMED] |
99. | Samaha-Kfoury JN, Araj GF. Recent developments in ί lactamases and extended spectrum ί lactamases. BMJ 2003;327:1209-13. |
100. | Akhan S, Coskunkan F, Tansel O, Vahaboglu H. Conjugative resistance to tazobactam plus piperacillin among extended-spectrum beta-lactamase-producing nosocomial Klebsiella pneumoniae. Scand J Infect Dis 2001;33:512-5. |
101. | Thomson KS, Moland ES. Cefepime, piperacillin-tazobactam, and the inoculum effect in tests with extended-spectrum beta-lactamase-producing Enterobacteriaceae. Antimicrob Agents Chemother 2001;45:3548-54. |
102. | Rawat D, Hasan AS, Capoor MR, Sarma S, Nair D, Deb M, et al. In vitro evaluation of a new cefixime-clavulanic acid combination for gram-negative bacteria. Southeast Asian J Trop Med Public Health 2009;40:131-9. |
103. | Shah PM, Isaacs RD. Etrapenam, the first of a new group of carbapenems. J Antimicrob Chemother 2003;52:538-42. |
104. | Patterson JE, Hardin TC, Kelly CA, Garcia RC, Jorgensen JH. Association of antibiotic utilization measures and control of multiple-drug resistance in Klebsiella pneumoniae. Infect Control Hosp Epidemiol 2000;21:455-8. |
105. | Piroth L, Aube H, Doise JM, Vincent-Martin M. Spread of extended-spectrum beta-lactamase-producing Klebsiella pneumoniae: Are beta-lactamase inhibitors of therapeutic value? Clin Infect Dis 1998;27:76-80. |
106. | Rice LB, Eckstein EC, DeVente J, Shlaes DM. Ceftazidime-resistant Klebsiella pneumoniae isolates recovered at the Cleveland Department of Veterans Affairs Medical Center. Clin Infect Dis 1996;23:118-24. |
107. | Baraniak A, Sadowy E, Hryniewicz W, Gniadkowski M. Two different extended-spectrum beta-lactamases (ESBLs) in one of the first ESBL-producing Salmonella isolates in Poland. J Clin Microbiol 2002;40:1095-7. |
108. | Bradford PA, Cherubin CE, Idemyor V, Rasmussen BA, Bush K. Multiply resistant Klebsiella pneumoniae strains from two Chicago hospitals: Identification of the extended-spectrum TEM-12 and TEM-10 ceftazidime-hydrolyzing beta-lactamases in a single isolate. Antimicrob Agents Chemother 1994;38:761-6. |
109. | Chanawong A, M′Zali FH, Heritage J, Xiong JH, Hawkey PM. Three cefotaximases, CTX-M-9, CTX-M-13, and CTX-M-14, among Enterobacteriaceae in the People′s Republic of China. Antimicrob Agents Chemother 2002;46:630-7. |
110. | Shen D, Winokur P, Jones RN. Characterization of extended spectrum beta-lactamase-producing Klebsiella pneumoniae from Beijing, China. Int J Antimicrob Agents 2001;18:185-8. |

Correspondence Address: Deepti Rawat Department of Microbiology, Maulana Azad Medical College, New Delhi India
 Source of Support: None, Conflict of Interest: None  | Check |
DOI: 10.4103/0974-777X.68531

|
|
This article has been cited by | 1 |
Physicians’ attitudes, knowledge, and practices regarding antibiotic prescriptions |
|
| Fatma Al Rahbi, Issa Al Salmi, Faryal Khamis, Zakaria Al Balushi, Nenad Pandak, Eskild Petersen, Suad Hannawi | | Journal of Global Antimicrobial Resistance. 2023; 32: 58 | | [Pubmed] | [DOI] | | 2 |
Performance of Phenotypic Tests to Detect ß-Lactamases in a Population of ß-Lactamase Coproducing Enterobacteriaceae Isolates |
|
| Vindya Perera, Nelun de Silva, Kushlani Jayatilleke, Sara de Silva, Enoka Corea | | Journal of Laboratory Physicians. 2023; | | [Pubmed] | [DOI] | | 3 |
Increasing Prevalence of Pediatric Community-acquired UTI by Extended Spectrum ß-Lactamase-producing E. coli: Cause for Concern |
|
| Joshua D. Collingwood, April H. Yarbrough, Suresh B. Boppana, Pankaj P. Dangle | | Pediatric Infectious Disease Journal. 2023; 42(2): 106 | | [Pubmed] | [DOI] | | 4 |
Systematic Review and Meta-analysis on Extended-Spectrum ß-lactamases Producing Klebsiella pneumoniae in Nepal |
|
| Manita Shyaula, Christina Khadka, Prabin Dawadi, Megha Raj Banjara | | Microbiology Insights. 2023; 16: 1178636122 | | [Pubmed] | [DOI] | | 5 |
Phenotypical Detection of ß-Lactamases in a Multidrug-Resistant and Extensively Drug-Resistant Chryseobacterium indologens: A Rare Human Pathogen With Special References to Risk Factor |
|
| Ranjana Parajuli, Trishant Limbu, Raina Chaudhary, Kundan Gautam, Pragyan Dahal | | Microbiology Insights. 2023; 16: 1178636122 | | [Pubmed] | [DOI] | | 6 |
Association of multidrug resistance behavior of clinical Pseudomonas aeruginosa to pigment coloration |
|
| Ashish Kothari, Shyam Kishor Kumar, Vanya Singh, Prashant Kumar, Karanvir Kaushal, Atul Pandey, Neeraj Jain, Balram Ji Omar | | European Journal of Medical Research. 2022; 27(1) | | [Pubmed] | [DOI] | | 7 |
Prevalence of extended-spectrum ß-lactamase-producing Enterobacterales in retail sheep meat from Zagazig city, Egypt |
|
| H. M. Abdallah, N. Al Naiemi, Ibrahim Elsohaby, Abdallah F. A. Mahmoud, Gamal A. Salem, C. M. J. E. Vandenbroucke-Grauls | | BMC Veterinary Research. 2022; 18(1) | | [Pubmed] | [DOI] | | 8 |
A One Health Genomic Investigation of Gentamicin Resistance in Escherichia coli from Human and Chicken Sources in Canada, 2014 to 2017 |
|
| Graham W. Cox, Brent P. Avery, E. Jane Parmley, Rebecca J. Irwin, Richard J. Reid-Smith, Anne E. Deckert, Rita L. Finley, Danielle Daignault, George G. Zhanel, Michael R. Mulvey, Amrita Bharat | | Antimicrobial Agents and Chemotherapy. 2022; | | [Pubmed] | [DOI] | | 9 |
Cefotaxime Exposure Selects Mutations within the CA-Domain of
envZ
Which Promote Antibiotic Resistance but Repress Biofilm Formation in Salmonella
|
|
| Eleftheria Trampari, Chuanzhen Zhang, Kathryn Gotts, George M. Savva, Vassiliy N. Bavro, Mark Webber, Matthew J. Culyba | | Microbiology Spectrum. 2022; | | [Pubmed] | [DOI] | | 10 |
Clinical Epidemiology Characteristics and Antibiotic Resistance Associated with Urinary Tract Infections Caused by E. coli |
|
| Sang Ngoc Nguyen, Huyen Thanh Thi Le, Tam Duc Tran, Lam Tung Vu, Tho Huu Ho, Tej Mattoo | | International Journal of Nephrology. 2022; 2022: 1 | | [Pubmed] | [DOI] | | 11 |
Clinical Outcomes of Children With Extended-spectrum ß -Lactamase Urinary Tract Infection Receiving Discordant Empiric Antibiotic: A Comparative Study of Fever Duration, Length of Stay, and Readmissions |
|
| Xhesika Begaj, Hannah Lee, Asif Noor, Theresa Fiorito, Vipin Agarwalla, Ooha Kambhampati, Shahidul Islam, Leonard R. Krilov | | Clinical Pediatrics. 2022; : 0009922822 | | [Pubmed] | [DOI] | | 12 |
Antimicrobial resistance including Extended Spectrum Beta Lactamases (ESBL) among E. coli isolated from kenyan children at hospital discharge |
|
| Stephanie N. Tornberg-Belanger, Doreen Rwigi, Michael Mugo, Lynnete Kitheka, Nancy Onamu, Derrick Ounga, Mame M. Diakhate, Hannah E. Atlas, Anna Wald, R. Scott McClelland, Olusegun O. Soge, Kirkby D. Tickell, Samuel Kariuki, Benson O. Singa, Judd L. Walson, Patricia B. Pavlinac, Husain Poonawala | | PLOS Neglected Tropical Diseases. 2022; 16(3): e0010283 | | [Pubmed] | [DOI] | | 13 |
Chromosomal studies on drug resistance genes in extended spectrum ß-lactamases producing-Klebsiella pneumoniae isolated from equine |
|
| Nehal M. Fawzy, Shaimaa R. A. Abd Elmawgoud, Soumaya S. A. El-Shafii, Azza N. Farag, Kamelia M. Osman | | Beni-Suef University Journal of Basic and Applied Sciences. 2022; 11(1) | | [Pubmed] | [DOI] | | 14 |
Prevalence of common carbapenemase genes and multidrug resistance among uropathogenic Escherichia coli phylogroup B2 isolates from outpatients in Wasit Province/ Iraq |
|
| Sareaa Maseer Gatya Al-Mayahie, Dhifar Raa’d Taher Al-Guranie, Aya Aziz Hussein, Zaineb Ali Bachai, Abdelazeem Mohamed Algammal | | PLOS ONE. 2022; 17(1): e0262984 | | [Pubmed] | [DOI] | | 15 |
Diarrhoeagenic E. coli occurrence and antimicrobial resistance of Extended Spectrum Beta-Lactamases isolated from diarrhoea patients attending health facilities in Accra, Ghana |
|
| Helena Dela, Beverly Egyir, Ayodele O. Majekodunmi, Eric Behene, Clara Yeboah, Dominic Ackah, Richard N. A. Bongo, Bassirou Bonfoh, Jakob Zinsstag, Langbong Bimi, Kennedy Kwasi Addo, Muhammad Hussnain Siddique | | PLOS ONE. 2022; 17(5): e0268991 | | [Pubmed] | [DOI] | | 16 |
Why screen the vaginal microbiome? |
|
| Sebastian Faro MD, PhD, Mark Martens MD | | Obstetrics & Gynecology International Journal. 2022; 13(2): 116 | | [Pubmed] | [DOI] | | 17 |
Antibiotics and Antibiotic Resistance- Flipsides of the Same Coin |
|
| Sonali Bhardwaj, Parul Mehra, Daljeet Singh Dhanjal, Parvarish Sharma, Varun Sharma, Reena Singh, Eugenie Nepovimova, Chirag Chopra, Kamil Kuca | | Current Pharmaceutical Design. 2022; 28(28): 2312 | | [Pubmed] | [DOI] | | 18 |
High Prevalence of Multi-Drug Resistance and Extended-Spectrum Beta-Lactamase-Producing Enterobacteriaceae Among Hospitalized Patients Presumptive for Bacterial Infection at Debre Berhan Comprehensive Specialized Hospital, Ethiopia |
|
| Zenawork Sahle, Getabalew Engidaye, Demissew Shenkute, Yeshi Metaferia, Agumas Shibabaw | | Infection and Drug Resistance. 2022; Volume 15: 2639 | | [Pubmed] | [DOI] | | 19 |
Multi-Drug Resistance Profile, Prevalence of Extended-Spectrum Beta-Lactamase and Carbapenemase-Producing Gram Negative Bacilli Among Admitted Patients After Surgery with Suspected of Surgical Site Nosocomial Infection North East Ethiopia |
|
| Mihret Tilahun | | Infection and Drug Resistance. 2022; Volume 15: 3949 | | [Pubmed] | [DOI] | | 20 |
Isolating and sequencing vB_Kpn_3, a lytic bacteriophage against multidrug-resistant Klebsiella pneumoniae |
|
| Fatemeh Habibinava, Mohammad Soleimani, Salehe Sabouri, Mohsen Zargar, Mohammad Reza Zolfaghari | | Future Microbiology. 2022; | | [Pubmed] | [DOI] | | 21 |
Biofilm Production and its Association with Multi Drug Resistance in Pseudomonas aeruginosa among ICU Patients with Special Reference to ESBL, AmpC and MBL production |
|
| Shivendra Dutt Shukla, Geeta Gupta, Razia Khatoon, Ritu Jain, Ankita Gupta | | Journal of Pure and Applied Microbiology. 2022; | | [Pubmed] | [DOI] | | 22 |
Prevalence, antibiotic profile, virulence determinants, ESBLs, and non-ß-lactam encoding genes of MDR Proteus spp. isolated from infected dogs |
|
| Reham M. El-Tarabili, Elsayyad M. Ahmed, Nada K. Alharbi, Maha A. Alharbi, Ahlam H. AlRokban, Doaa Naguib, Sadeq K. Alhag, Tamer Mohamed El Feky, Ahmed Ezzat Ahmed, Ahmed E. Mahmoud | | Frontiers in Genetics. 2022; 13 | | [Pubmed] | [DOI] | | 23 |
High prevalence of extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae isolates: A 5-year retrospective study at a Tertiary Hospital in Northern Thailand |
|
| Achiraya Siriphap, Thawatchai Kitti, Akachai Khuekankaew, Chalermchai Boonlao, Chonthida Thephinlap, Chutamas Thepmalee, Nittiya Suwannasom, Krissana Khoothiam | | Frontiers in Cellular and Infection Microbiology. 2022; 12 | | [Pubmed] | [DOI] | | 24 |
Fosfomycin Prevents Intravenous Antibiotic Therapy in Women With Recurrent Urinary Tract Infections: A Retrospective Review |
|
| Timothy F. Carroll, Alana L. Christie, Bonnie C. Prokesch, Philippe E. Zimmern | | Female Pelvic Medicine & Reconstructive Surgery. 2022; 28(2): 109 | | [Pubmed] | [DOI] | | 25 |
An ST131 clade and a phylogroup A clade bearing an O101-like O-antigen cluster predominate among bloodstream Escherichia coli isolates from South-West Nigeria hospitals |
|
| Ayorinde O. Afolayan, A. Oladipo Aboderin, Anderson O. Oaikhena, Erkison Ewomazino Odih, Veronica O. Ogunleye, Adeyemi T. Adeyemo, Abolaji T. Adeyemo, Oyeniyi S. Bejide, Anthony Underwood, Silvia Argimón, Monica Abrudan, Abiodun Egwuenu, Chikwe Ihekweazu, David M. Aanensen, Iruka N. Okeke | |
Microbial Genomics
. 2022; 8(12) | | [Pubmed] | [DOI] | | 26 |
Characterization of diarrhoeagenic
Escherichia coli
with special reference to antimicrobial resistance isolated from hospitalized diarrhoeal patients in Kolkata (2012–2019), India
|
|
| Debjani Ghosh, Goutam Chowdhury, Prosenjit Samanta, Sreeja Shaw, Alok K. Deb, Mainak Bardhan, Asis Manna, Shin-ichi Miyoshi, Thandavarayan Ramamurthy, Shanta Dutta, Asish K. Mukhopadhyay | | Journal of Applied Microbiology. 2022; | | [Pubmed] | [DOI] | | 27 |
Prevalence of Antimicrobial Resistant and Extended-Spectrum Beta-Lactamase-producing Escherichia coli in Dairy Cattle Farms in East Tennessee |
|
| Benti D. Gelalcha, Desta B. Ensermu, Getahun E. Agga, Molly Vancuren, Barbara E. Gillespie, Doris H. D'Souza, Chika C. Okafor, Oudessa Kerro Dego | | Foodborne Pathogens and Disease. 2022; | | [Pubmed] | [DOI] | | 28 |
Comparative insight into the roles of the non active-site residues E169 and N173 in imparting the beta-lactamase activity of CTX-M-15 |
|
| Jyoti Verma, Diamond Jain, Dhriti Mallik, Anindya S Ghosh | | FEMS Microbiology Letters. 2022; 369(1) | | [Pubmed] | [DOI] | | 29 |
Determining the in vitro susceptibility of tebipenem, an oral carbapenem, against third-generation cephalosporin-resistant Escherichia coli and Klebsiella pneumoniae isolated from bloodstream infections |
|
| Ama Ranasinghe, Andrew Henderson, Kyra Cottrell, Cindy S E Tan, Delaney Burnard, Hideo Kato, David L Paterson, Patrick N A Harris | | JAC-Antimicrobial Resistance. 2022; 4(5) | | [Pubmed] | [DOI] | | 30 |
Analysis of Ceftazidime/Avibactam Use for Treating Carbapenem-Resistant Infections in Critically Ill Patients With Thermal or Inhalation Injuries |
|
| Kelsey Martin, Faisal Arif, Ibrahim Sultan-Ali, Sai R Velamuri, David M Hill | | Journal of Burn Care & Research. 2022; | | [Pubmed] | [DOI] | | 31 |
Antibacterial, anti-biofilm, and anti-adhesive activities of melittin, a honeybee venom-derived peptide, against quinolone-resistant uropathogenic Escherichia coli (UPEC) |
|
| William Gustavo Lima, Francisco Leandro Batista Filho, Iasmin Pinheiro Lima, Daniela Carolina Simião, Júlio César Moreira Brito, Waleska Stephanie da Cruz Nizer, Valbert Nascimento Cardoso, Simone Odília Antunes Fernandes | | Natural Product Research. 2022; : 1 | | [Pubmed] | [DOI] | | 32 |
Antibiotic-functionalized gold nanoparticles for the detection of active ß-lactamases |
|
| Lisa M. Miller, Matthew D. Simmons, Callum D. Silver, Thomas F. Krauss, Gavin H. Thomas, Steven D. Johnson, Anne-Kathrin Duhme-Klair | | Nanoscale Advances. 2022; | | [Pubmed] | [DOI] | | 33 |
Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics |
|
| Shugang Qin, Wen Xiao, Chuanmin Zhou, Qinqin Pu, Xin Deng, Lefu Lan, Haihua Liang, Xiangrong Song, Min Wu | | Signal Transduction and Targeted Therapy. 2022; 7(1) | | [Pubmed] | [DOI] | | 34 |
Genome-wide identification of carbapenem-resistant Gram-negative bacterial (CR-GNB) isolates retrieved from hospitalized patients in Bihar, India |
|
| Namrata Kumari, Mukesh Kumar, Amit Katiyar, Abhay Kumar, Pallavi Priya, Bablu Kumar, Nihar Ranjan Biswas, Punit Kaur | | Scientific Reports. 2022; 12(1) | | [Pubmed] | [DOI] | | 35 |
Correlation between antibiotic consumption and resistance of Pseudomonas aeruginosa in a teaching hospital implementing an antimicrobial stewardship program: A longitudinal observational study |
|
| Hsiao-Wen Huang, Hsin-Yi Liu, Han-Chuan Chuang, Bi-Li Chen, Er-Ying Wang, Li-Hsin Tsao, Ming-Ying Ai, Yuarn-Jang Lee | | Journal of Microbiology, Immunology and Infection. 2022; | | [Pubmed] | [DOI] | | 36 |
Risk Factors for Community acquired Pediatric Urinary Tract Infection with Extended-spectrum-ß-lactamase E. coli - A case-control study |
|
| Joshua D. Collingwood, Lingling Wang, Inmaculada B. Aban, April H. Yarbrough, Suresh B. Boppana, Pankaj P. Dangle | | Journal of Pediatric Urology. 2022; | | [Pubmed] | [DOI] | | 37 |
Synergistic antimicrobial effect of the combination of beta-lactam antibiotics and chitosan derivative on multidrug-resistant bacteria |
|
| Manpreet Kaur, Yael Cohen, Elena Poverenov, Evgeni Eltzov | | International Journal of Biological Macromolecules. 2022; 223: 1107 | | [Pubmed] | [DOI] | | 38 |
Invasive extended-spectrum beta-lactamase (ESBL) related infection rates are not influenced by international travel restrictions |
|
| Annaleise R. Howard-Jones, Samiha Rifaath Anver, Kirsten Tsang, James Branley | | Pathology. 2022; | | [Pubmed] | [DOI] | | 39 |
Photophysical and In vitro photoinactivation of Escherichia coli using cationic 5,10,15,20-Tetra(pyridin-3-yl) porphyrin and Zn(II) derivative conjugated to Graphene quantum dots |
|
| Mahlatse Mokgaetjie Ledwaba, Ngwanabjala Bridged. Magaela, Knowledge Siyabonga Ndlovu, John Mack, Tebello Nyokong, Muthumuni Managa | | Photodiagnosis and Photodynamic Therapy. 2022; : 103127 | | [Pubmed] | [DOI] | | 40 |
Prevalence and characteristics of multidrug-resistant Proteus mirabilis from broiler farms in Shandong Province, China |
|
| Zixuan Li, Chong Peng, Gerui Zhang, Yuanyu Shen, Yuxuan Zhang, Cong Liu, Mengda Liu, Fangkun Wang | | Poultry Science. 2022; : 101710 | | [Pubmed] | [DOI] | | 41 |
Genomic features of a multidrug-resistant and mercury-tolerant environmental Escherichia coli recovered after a mining dam disaster in South America |
|
| Natália C. Gaeta, Daniel U. de Carvalho, Herrison Fontana, Elder Sano, Quézia Moura, Bruna Fuga, Patricio Montecinos Munoz, Lilian Gregory, Nilton Lincopan | | Science of The Total Environment. 2022; 823: 153590 | | [Pubmed] | [DOI] | | 42 |
Occurrence of multidrug resistant Gram-negative bacteria and resistance genes in semi-aquatic wildlife - Trachemys scripta, Neovison vison and Lutra lutra - as sentinels of environmental health |
|
| Tilaye Shibbiru Mengistu, Biel Garcias, Gabriela Castellanos, Chiara Seminati, Rafael A. Molina-López, Laila Darwich | | Science of The Total Environment. 2022; 830: 154814 | | [Pubmed] | [DOI] | | 43 |
Characterization of Beta-Lactam Resistance Genes and Virulence Factors Associated with Multidrug-Resistant Klebsiella pneumoniae Isolated from Patients at Major Hospitals in Trinidad, West Indies |
|
| Aarti Pustam, Jayaraj Jayaraman, Adesh Ramsubhag | | Current Microbiology. 2022; 79(9) | | [Pubmed] | [DOI] | | 44 |
The rate of frequent co-existence of plasmid-mediated quinolone resistance (PMQR) and extended-spectrum ß-lactamase (ESBL) genes in Escherichia coli isolates from retail raw chicken in South Korea |
|
| Hyeeun Park, Jinshil Kim, Sangryeol Ryu, Byeonghwa Jeon | | Food Science and Biotechnology. 2022; | | [Pubmed] | [DOI] | | 45 |
Characterization and antimicrobial susceptibility of biofilm-producing Avian Pathogenic Escherichia coli from broiler chickens and their environment in India |
|
| Kushal Grakh, Dinesh Mittal, Anand Prakash, Naresh Jindal | | Veterinary Research Communications. 2022; | | [Pubmed] | [DOI] | | 46 |
Camellia sinensis mediated synthesis and characterization of nanoparticles and applications to control Gram-negative ESBL producing antibiotic resistant bacterial pathogens |
|
| Tasneem Juzer, Ranjani S, Hemalatha S | | Food Bioscience. 2022; : 102070 | | [Pubmed] | [DOI] | | 47 |
Incidence of Vancomycin-Resistant Staphylococcus aureus Strains among Patients with Urinary Tract Infections |
|
| Samy Selim, Osama Ahmed Faried, Mohammed S. Almuhayawi, Fayez M. Saleh, Mohamed Sharaf, Nihal El Nahhas, Mona Warrad | | Antibiotics. 2022; 11(3): 408 | | [Pubmed] | [DOI] | | 48 |
Molecular Characterization of Extended Spectrum ß-Lactamase (ESBL) and Virulence Gene-Factors in Uropathogenic Escherichia coli (UPEC) in Children in Duhok City, Kurdistan Region, Iraq |
|
| Salwa Muhsin Hasan, Khalid S. Ibrahim | | Antibiotics. 2022; 11(9): 1246 | | [Pubmed] | [DOI] | | 49 |
Extended-Spectrum Beta-Lactamases Producing Enterobacteriaceae in the USA Dairy Cattle Farms and Implications for Public Health |
|
| Benti Deresa Gelalcha, Oudessa Kerro Dego | | Antibiotics. 2022; 11(10): 1313 | | [Pubmed] | [DOI] | | 50 |
Occurrence and Biological Cost of mcr-1-Carrying Plasmids Co-harbouring Beta-Lactamase Resistance Genes in Zoonotic Pathogens from Intensive Animal Production |
|
| Tiago Lima, Dina Loureiro, Ana Henriques, Fernando Ramos, Constança Pomba, Sara Domingues, Gabriela Jorge da Silva | | Antibiotics. 2022; 11(10): 1356 | | [Pubmed] | [DOI] | | 51 |
Exploring Oceans for Curative Compounds: Potential New Antimicrobial and Anti-Virulence Molecules against Pseudomonas aeruginosa |
|
| Daniela Coppola, Carmine Buonocore, Morgan Palisse, Pietro Tedesco, Donatella de Pascale | | Marine Drugs. 2022; 21(1): 9 | | [Pubmed] | [DOI] | | 52 |
Antimicrobial Resistance and Virulence Characteristics of Klebsiella pneumoniae Isolates in Kenya by Whole-Genome Sequencing |
|
| Angela Muraya, Cecilia Kyany’a, Shahiid Kiyaga, Hunter J. Smith, Caleb Kibet, Melissa J. Martin, Josephine Kimani, Lillian Musila | | Pathogens. 2022; 11(5): 545 | | [Pubmed] | [DOI] | | 53 |
Recent Advances in the Use of Molecular Methods for the Diagnosis of Bacterial Infections |
|
| Elisabetta Gerace, Giuseppe Mancuso, Angelina Midiri, Stefano Poidomani, Sebastiana Zummo, Carmelo Biondo | | Pathogens. 2022; 11(6): 663 | | [Pubmed] | [DOI] | | 54 |
Genetic Correlation of Virulent Salmonella Serovars (Extended Spectrum ß-Lactamases) Isolated from Broiler Chickens and Human: A Public Health Concern |
|
| Ahmed Orabi, Wagih Armanious, Ismail A. Radwan, Zeinab M. S. A. Girh, Enas Hammad, Mohamed S. Diab, Ahmed R. Elbestawy | | Pathogens. 2022; 11(10): 1196 | | [Pubmed] | [DOI] | | 55 |
Safety Issues Regarding the Detection of Antibiotics Residues, Microbial Indicators and Somatic Cell Counts in Ewes’ and Goats’ Milk Reared in Two Different Farming Systems |
|
| Georgios Rozos, Ioannis Skoufos, Konstantina Fotou, Athanasios Alexopoulos, Anastasios Tsinas, Eugenia Bezirtzoglou, Athina Tzora, Chrysoula (Chrysa) Voidarou | | Applied Sciences. 2022; 12(3): 1009 | | [Pubmed] | [DOI] | | 56 |
Extended Spectrum Beta-Lactamase Expressing Chromobacterium Sp. Dyh27s2016 Strain is Capable of Metal Leaching in Electronic Waste |
|
| Pratheep Sandrasaigaran, Thiviaraj Palanisamy, Rattika Sukalingam, Sharmini Murugan | | Key Engineering Materials. 2022; 937: 181 | | [Pubmed] | [DOI] | | 57 |
Effect of Antibiotics and Glycerol on Improving Bacteriophage Detection and Enumeration |
|
| M. Türe, A. Cebeci, E. Aygür, F. Balci, N. Çaliskan, E.K. Polat | | Bulletin of the European Association of Fish Pathologists. 2022; | | [Pubmed] | [DOI] | | 58 |
Magnitude of Extended-Spectrum Beta-Lactamase-Producing Gram-Negative and Beta-Lactamase-Producing Gram-Positive Pathogens Isolated from Patients in Dar es Salaam, Tanzania: A Cross-Sectional Study |
|
| Doreen Mloka, Raphael Z Sangeda, Kennedy D Mwambete, Appolinary. R Kamuhabwa | | Cureus. 2022; | | [Pubmed] | [DOI] | | 59 |
A Preliminary Study: Antibiotic Resistance of Escherichia
coli and Staphylococcus aureus from the Meat and
Feces of Various South African Wildlife Species |
|
| Michaela Sannettha van den Honert, Pieter Andries Gouws, Louwrens Christiaan Hoffman | | Food Science of Animal Resources. 2021; 41(1): 135 | | [Pubmed] | [DOI] | | 60 |
utilisation-of-third-generation-cephalosporins-and-the-occurrence-of-esbl-microorganisms-in-a-malaysian-general-hospital |
|
| >Ainul Aqilah Abdul Muin, >Chah Chah Ooi, >Mohammad Faisol Hamdi Omar, >Nor Ruzaini Ahmad, >Wei Chern Ang | | Malaysian Journal of Pharmacy. 2021; 7(2): 39 | | [Pubmed] | [DOI] | | 61 |
Antimicrobial Resistance Patterns and ESBL of Uropathogens Isolated from Adult Females in Najran Region of Saudi Arabia |
|
| Mohammed Yahia Alasmary | | Clinics and Practice. 2021; 11(3): 650 | | [Pubmed] | [DOI] | | 62 |
Genomic and Metabolic Characteristics of the Pathogenicity in Pseudomonas aeruginosa |
|
| Telma de Sousa, Michel Hébraud, Maria L. N. Enes Dapkevicius, Luís Maltez, José Eduardo Pereira, Rosa Capita, Carlos Alonso-Calleja, Gilberto Igrejas, Patricia Poeta | | International Journal of Molecular Sciences. 2021; 22(23): 12892 | | [Pubmed] | [DOI] | | 63 |
The Role of Aquatic Ecosystems (River Tua, Portugal) as Reservoirs of Multidrug-Resistant Aeromonas spp. |
|
| Sónia Gomes, Conceição Fernandes, Sandra Monteiro, Edna Cabecinha, Amílcar Teixeira, Simone Varandas, Maria Saavedra | | Water. 2021; 13(5): 698 | | [Pubmed] | [DOI] | | 64 |
PHENOTYPIC DETECTION OF EXTENDED SPECTRUM BETA LACTAMASE AND THEIR ANTIBIOTIC SENSITIVITY PATTERN IN VARIOUS CLINICAL ISOLATES OF ENTEROBACTERIACEAE |
|
| Deepali Gupta, Vipin Kumar Varshney, Shachi Shachi | | GLOBAL JOURNAL FOR RESEARCH ANALYSIS. 2021; : 54 | | [Pubmed] | [DOI] | | 65 |
Extended-spectrum beta-lactamase (ESBL) producing and multidrug-resistant Escherichia coli in street foods: a public health concern |
|
| M. Sivakumar, G. Abass, R. Vivekanandhan, Anukampa, D. K. Singh, Kiran Bhilegaonkar, Suman Kumar, M. R. Grace, Zunjar Dubal | | Journal of Food Science and Technology. 2021; 58(4): 1247 | | [Pubmed] | [DOI] | | 66 |
Mastering the Gram-negative bacterial barrier – Chemical approaches to increase bacterial bioavailability of antibiotics |
|
| Henni-Karoliina Ropponen, Robert Richter, Anna K.H. Hirsch, Claus-Michael Lehr | | Advanced Drug Delivery Reviews. 2021; 172: 339 | | [Pubmed] | [DOI] | | 67 |
Culture dependent and independent detection of multiple extended beta-lactamase producing and biofilm forming Salmonella species from leafy vegetables |
|
| Rajesh P. Shastry, Sudeep D. Ghate, Shukla Banerjee, Yakshitha P. H | | Biocatalysis and Agricultural Biotechnology. 2021; 38: 102202 | | [Pubmed] | [DOI] | | 68 |
Highly efficient antibacterial activity of graphene/chitosan/magnetite nanocomposites against ESBL-producing Pseudomonas aeruginosa and Klebsiella pneumoniae |
|
| Muthuchamy Maruthupandy, Govindan Rajivgandhi, Thillaichidambaram Muneeswaran, Muthusamy Anand, Franck Quero | | Colloids and Surfaces B: Biointerfaces. 2021; 202: 111690 | | [Pubmed] | [DOI] | | 69 |
Profiles of multidrug-resistant organisms among patients with bacteremia in intensive care units: an international ID-IRI survey |
|
| Rehab El-Sokkary, Serhat Uysal, Hakan Erdem, Ravina Kullar, Abdullah Umut Pekok, Fatma Amer, Svjetlana Grgic, Biljana Carevic, Amani El-Kholy, Anna Liskova, Mehmet Özdemir, Ejaz Ahmed Khan, Yesim Uygun-Kizmaz, Nenad Pandak, Nirav Pandya, Jurica Arapovic, Ridvan Karaali, Nefise Oztoprak, Michael M. Petrov, Rami Alabadla, Handan Alay, Jehan Ali El Kholy, Caroline Landelle, Reham Khedr, Dhruv Mamtora, Gorana Dragovac, Ricardo Fernandez, Emine Unal Evren, Lul Raka, Antonio Cascio, Nicolas Dauby, Ahsen Oncul, Safak Ozer Balin, Yasemin Cag, Natalia Dirani, Mustafa Dogan, Irina Magdalena Dumitru, Maha Ali Gad, Ilad Alavi Darazam, Behrouz Naghili, Rosa Fontana Del Vecchio, Monica Licker, Andrea Marino, Nasim Akhtar, Mostafa Kamal, Goffredo Angioni, Deana Medic, Aliye Esmaoglu, Szabo Balint Gergely, André Silva-Pinto, Lurdes Santos, Ionela Larisa Miftode, Recep Tekin, Phunsup Wongsurakiat, Mumtaz Ali Khan, Yesim Kurekci, Hema Prakash Pilli, Krsto Grozdanovski, Egidia Miftode, Rusmir Baljic, Hal | | European Journal of Clinical Microbiology & Infectious Diseases. 2021; 40(11): 2323 | | [Pubmed] | [DOI] | | 70 |
Antimicrobial resistance dynamics and the one-health strategy: a review |
|
| Kumar Siddharth Singh, Santosh Anand, Sunny Dholpuria, Jitendra Kumar Sharma, Wulf Blankenfeldt, Yogesh Shouche | | Environmental Chemistry Letters. 2021; 19(4): 2995 | | [Pubmed] | [DOI] | | 71 |
Identification, antibiotic resistance, and virulence profiling of Aeromonas and Pseudomonas species from wastewater and surface water |
|
| Reshme Govender, Isaac Dennis Amoah, Anthony Ayodeji Adegoke, Gulshan Singh, Sheena Kumari, Feroz Mahomed Swalaha, Faizal Bux, Thor Axel Stenström | | Environmental Monitoring and Assessment. 2021; 193(5) | | [Pubmed] | [DOI] | | 72 |
Performance of nasal methicillin-resistant
Staphylococcus aureus
screening for intra-abdominal infections in critically ill adult patients
|
|
| Sean Bennett, Chanda Mullen, Bhavin Mistry, Michaelia Cucci | | Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy. 2021; 41(3): 257 | | [Pubmed] | [DOI] | | 73 |
Isolation of
Salmonella
spp. from black spiny-tailed iguana (
Ctenosaura similis
) meat commercialised in markets of León city, Nicaragua
|
|
| Rosmary Ríos, Byron Flores, Brenda Mora-Sánchez, Dayana Torres, Jessica Sheleby-Elías, William Jirón, José L. Balcázar | | Veterinary Medicine and Science. 2021; | | [Pubmed] | [DOI] | | 74 |
Antimicrobial susceptibility testing profiles of ESBL-producing Enterobacterales isolated from hospital and community adult patients in Blantyre, Malawi |
|
| Onduru G. Onduru, Said Aboud, Tonney S. Nyirenda, Susan F. Rumisha, Rajhab S. Mkakosya | | IJID Regions. 2021; 1: 47 | | [Pubmed] | [DOI] | | 75 |
Dual-role of graphene/bacterial cellulose/magnetite nanocomposites as highly effective antibacterial agent and visible-light-driven photocatalyst |
|
| Muthuchamy Maruthupandy, Darlyn Riquelme, Govindan Rajivgandhi, Thillaichidambaram Muneeswaran, Wan-Seob Cho, Muthusamy Anand, Natesan Manoharan, Franck Quero | | Journal of Environmental Chemical Engineering. 2021; 9(5): 106014 | | [Pubmed] | [DOI] | | 76 |
Synthesis of gallotannin capped iron oxide nanoparticles and their broad spectrum biological applications |
|
| Bilal Ahmed, Asad Syed, Khursheed Ali, Abdallah M. Elgorban, Afroz Khan, Jintae Lee, Hind A. AL-Shwaiman | | RSC Advances. 2021; 11(17): 9880 | | [Pubmed] | [DOI] | | 77 |
N-Aryl mercaptoacetamides as potential multi-target inhibitors of metallo-ß-lactamases (MBLs) and the virulence factor LasB from Pseudomonas aeruginosa |
|
| Samir Yahiaoui, Katrin Voos, Jörg Haupenthal, Thomas A. Wichelhaus, Denia Frank, Lilia Weizel, Marco Rotter, Steffen Brunst, Jan S. Kramer, Ewgenij Proschak, Christian Ducho, Anna K. H. Hirsch | | RSC Medicinal Chemistry. 2021; 12(10): 1698 | | [Pubmed] | [DOI] | | 78 |
Metal-organic frameworks for diagnosis and therapy of infectious diseases |
|
| Christian Rafael Quijia, Renata Carolina Alves, Gilmar Hanck-Silva, Regina Célia Galvão Frem, Guilherme Arroyos, Marlus Chorilli | | Critical Reviews in Microbiology. 2021; : 1 | | [Pubmed] | [DOI] | | 79 |
Comparative in vitro effectiveness of ceftolozane/tazobactam against pediatric gram-negative drug-resistant isolates |
|
| Neena Kanwar, Dithi Banerjee, Christopher J. Harrison, Jason G. Newland, Xuan Qin, Danielle M. Zerr, Theoklis Zaoutis, Rangaraj Selvarangan | | Journal of Chemotherapy. 2021; 33(5): 288 | | [Pubmed] | [DOI] | | 80 |
Measures used to assess the burden of ESBL-producing Escherichia coli infections in humans: a scoping review |
|
| Kathryn L McDonald, Sarah Garland, Carolee A Carson, Kimberly Gibbens, E Jane Parmley, Rita Finley, Melissa C MacKinnon | | JAC-Antimicrobial Resistance. 2021; 3(1) | | [Pubmed] | [DOI] | | 81 |
Potential therapeutic targets of Klebsiella pneumoniae: a multi-omics review perspective |
|
| Sabeeha Ali, Manzar Alam, Gulam Mustafa Hasan, Md Imtaiyaz Hassan | | Briefings in Functional Genomics. 2021; | | [Pubmed] | [DOI] | | 82 |
Rapid Genomic Characterization and Global Surveillance of Klebsiella Using Pathogenwatch |
|
| Silvia Argimón, Sophia David, Anthony Underwood, Monica Abrudan, Nicole E Wheeler, Mihir Kekre, Khalil Abudahab, Corin A Yeats, Richard Goater, Ben Taylor, Harry Harste, Dawn Muddyman, Edward J Feil, Sylvain Brisse, Kathryn Holt, Pilar Donado-Godoy, K L Ravikumar, Iruka N Okeke, Celia Carlos, David M Aanensen, Johan Fabian Bernal, Alejandra Arevalo, Maria Fernanda Valencia, Erik C D Osma Castro, Geetha Nagaraj, Varun Shamanna, Vandana Govindan, Akshata Prabhu, D Sravani, M R Shincy, Steffimole Rose, K N Ravishankar, Anderson O Oaikhena, Ayorinde O Afolayan, Jolaade J Ajiboye, Erkison Ewomazino Odih, Marietta L Lagrada, Polle Krystle V Macaranas, Agnettah M Olorosa, June M Gayeta, Melissa Ana L Masim, Elmer M Herrera, Ali Molloy, John Stelling | | Clinical Infectious Diseases. 2021; 73(Supplement): S325 | | [Pubmed] | [DOI] | | 83 |
Prevalence and molecular characterization of multidrug-resistant
Escherichia coli
O157
:
H7
from dairy milk in the Peshawar region of Pakistan
|
|
| Irshad Ahmad, Sonia Khattak, Roshan Ali, Nighat Nawaz, Kalim Ullah, Sher Bahadar Khan, Mumtaz Ali, Simon G. Patching, Mohammad Zahid Mustafa | | Journal of Food Safety. 2021; | | [Pubmed] | [DOI] | | 84 |
CTX-M-type ESBL-mediated resistance to third-generation cephalosporins and conjugative transfer of resistance in Gram-negative bacteria isolated from hospitals in Tamil Nadu, India |
|
| Ramesh Nachimuthu, Velu Rajesh Kannan, Bulent Bozdogan, Vaithilingam Krishnakumar, Karutha Pandian S, Prasanth Manohar | |
Access Microbiology
. 2021; 3(3) | | [Pubmed] | [DOI] | | 85 |
High genetic diversity among diarrheagenic Escherichia coli isolates from patients with acute diarrhea in Khuzestan province, Southwestern Iran |
|
| Parviz Owlia, Saeid Bouzari, Horieh Saderi, Roya Ghanavati, Atieh Darbandi | | Reviews in Medical Microbiology. 2021; 32(2): 106 | | [Pubmed] | [DOI] | | 86 |
The Abundance of Genes Encoding ESBL, pAmpC and Non-ß-Lactam Resistance in Multidrug-Resistant Enterobacteriaceae Recovered From Wastewater Effluents |
|
| Folake Temitope Fadare, Anthony Ifeanyi Okoh | | Frontiers in Environmental Science. 2021; 9 | | [Pubmed] | [DOI] | | 87 |
Detection of Cephalosporin and Fluoroquinolone Resistance Genes via Novel Multiplex qPCR in Fecal Salmonella Isolates From Northern Californian Dairy Cattle, 2002–2016 |
|
| Carl Basbas, Barbara A. Byrne, Munashe Chigerwe, Edlin D. Escobar, Emir Hodzic, Alda F. A. Pires, Richard V. Pereira | | Frontiers in Microbiology. 2021; 12 | | [Pubmed] | [DOI] | | 88 |
Prevalence and Characteristics of Ceftriaxone-Resistant Salmonella in Children’s Hospital in Hangzhou, China |
|
| Qiucheng Shi, Yihua Ye, Peng Lan, Xinhong Han, Jingjing Quan, Mingming Zhou, Yunsong Yu, Yan Jiang | | Frontiers in Microbiology. 2021; 12 | | [Pubmed] | [DOI] | | 89 |
Existence of Multiple ESBL Genes among Phenotypically Confirmed ESBL Producing Klebsiella pneumoniae and Escherichia coli Concurrently Isolated from Clinical, Colonization and Contamination Samples from Neonatal Units at Bugando Medical Center, Mwanza, Ta |
|
| Vitus Silago, Dory Kovacs, Happyness Samson, Jeremiah Seni, Louise Matthews, Katarina Oravcová, Athumani M. Lupindu, Abubakar S. Hoza, Stephen E. Mshana | | Antibiotics. 2021; 10(5): 476 | | [Pubmed] | [DOI] | | 90 |
The Prevalence and Characterization of Fecal Extended-Spectrum-Beta-Lactamase-Producing Escherichia coli Isolated from Pigs on Farms of Different Sizes in Latvia |
|
| Daiga Galina, Andris Balins, Anda Valdovska | | Antibiotics. 2021; 10(9): 1099 | | [Pubmed] | [DOI] | | 91 |
Mobile Antimicrobial Resistance Genes in Probiotics |
|
| Adrienn Gréta Tóth, István Csabai, Maura Fiona Judge, Gergely Maróti, Ágnes Becsei, Sándor Spisák, Norbert Solymosi | | Antibiotics. 2021; 10(11): 1287 | | [Pubmed] | [DOI] | | 92 |
Isolation of Lytic Bacteriophages from Sewage Samples against MDR-Klebsiella pneumoniae and MDR-Enterobacter aerogenes: A potential tool for medical purposes |
|
| Fatemeh Habibinava, Mohammad Reza Zolfaghari, Salehe Sabouri Shahrbabak, Mohsen Zargar, Mohammad Soleimani | | Iranian Journal of Medical Microbiology. 2021; 15(1): 46 | | [Pubmed] | [DOI] | | 93 |
Phenotypic and Genotypic Detection of Extended-spectrum ß-lactamase production by Klebsiella pneumoniae Isolated from Different Clinical Samples in Baghdad, Iraq |
|
| Jaleel Samanje, Ahmed S. Mohammed, Maitham S.S. Al-Hamami | | Journal of Pure and Applied Microbiology. 2021; 15(3): 1681 | | [Pubmed] | [DOI] | | 94 |
Predisposition of Blood group Non-secretors to Urinary tract infection with Escherichia coli Anti-microbial Resistance and Acute Kidney Injury |
|
| Shanmugapriya Thiagarajan, Selvaraj Stephen, Sarangapani Kanagamuthu, Stanley Ambroise, Pragasam Viswanathan, Palanivel Chinnakali, Rajesh Nachiappa Ganesh | | Journal of Pure and Applied Microbiology. 2021; 15(4): 2085 | | [Pubmed] | [DOI] | | 95 |
Prevalence of OXA-type Class D ß-lactamases Among Clinical Isolates of Klebsiella Pneumoniae in Multiple Centers of Tehran, Iran |
|
| Pariya Mehrbakhsh, Yalda Basharkhah, Ashraf Bahkshi, Lida Tahmasebi Nezhad Kamarposhti, Shahin Bolori | | Infectious Disorders - Drug Targets. 2021; 21(4): 558 | | [Pubmed] | [DOI] | | 96 |
Molecular study to detect blaTEM
and blaCTx-M
genes in ESpL Escherichia coli and their antimicrobial resistance profile |
|
| May Abdul Jaleal Raoof, Mohammed A. Fayidh | | Journal of Physics: Conference Series. 2021; 1879(2): 022051 | | [Pubmed] | [DOI] | | 97 |
In vitro Antimicrobial Synergy Testing of Extensively Drug-Resistant Clinical Isolates at an Organ Transplant Center in Nepal |
|
| Rashmi Karki, Samir Lamichhane, Buddha Bahadur Basnet, Anuja Dahal, Bal Krishna Awal, Shyam Kumar Mishra | | Infection and Drug Resistance. 2021; Volume 14: 1669 | | [Pubmed] | [DOI] | | 98 |
Point Prevalence Survey of Antimicrobial Use in Four Tertiary Care Hospitals in Mexico |
|
| Federico A Zumaya-Estrada, Alfredo Ponce-de-León-Garduño, Edgar Ortiz-Brizuela, Juan Carlos Tinoco-Favila, Patricia Cornejo-Juárez, Diana Vilar-Compte, Alejandro Sassoé-González, Pedro Jesus Saturno-Hernandez, Celia M Alpuche-Aranda | | Infection and Drug Resistance. 2021; Volume 14: 4553 | | [Pubmed] | [DOI] | | 99 |
Comparative occurrence and antibiogram of extended-spectrum ß-lactamase-producing Escherichia coli among post-weaned calves and lactating cows from smallholder dairy farms in a parallel animal husbandry area |
|
| Chya Vannakovida, Kannika Na Lampang, Phongsakorn Chuammitri, Veerasak Punyapornwithaya, Khwanchai Kreausukon, Raktham Mektrirat | | Veterinary World. 2021; : 1311 | | [Pubmed] | [DOI] | | 100 |
Molecular epidemiology of Pseudomonas aeruginosa isolated from lower respiratory tract of ICU patients |
|
| X. Yang, Y. Lai, C. Li, J. Yang, M. Jia, J. Sheng | | Brazilian Journal of Biology. 2021; 81(2): 351 | | [Pubmed] | [DOI] | | 101 |
Prevalence of various Beta-lactamases in Enterobacteriaceae in a tertiary care hospital in South India: A Cross-sectional study |
|
| Soumya Kaup, S Roopashree | | IP International Journal of Medical Microbiology and Tropical Diseases. 2021; 7(3): 186 | | [Pubmed] | [DOI] | | 102 |
Optimizing ZnO/CdS Nano Composite Controlled by Fe Doping Towards Efficiency in Water Treatment and Antimicrobial Activity |
|
| Jayanta Barman, Archana Das, Bapan Banik, Farhana Sultana | | Current World Environment. 2021; 16(3): 726 | | [Pubmed] | [DOI] | | 103 |
Distribution and molecular characterization of ESBL, pAmpC ß-lactamases, and non-ß-lactam encoding genes in Enterobacteriaceae isolated from hospital wastewater in Eastern Cape Province, South Africa |
|
| Folake Temitope Fadare, Anthony Ifeanyi Okoh, Grzegorz Wozniakowski | | PLOS ONE. 2021; 16(7): e0254753 | | [Pubmed] | [DOI] | | 104 |
Study of aerobic and anaerobic bacterial profile of nosocomial infections and their antibiotic resistance in a referral center, Southwest Iran: A three year cross-sectional study |
|
| Nazanin Ahmadkhosravi, Azar Dokht Khosravi, Aram Asareh Zadegan Dezfuli, Mohammad Hashemzadeh, Morteza Saki, Fatemeh Jahangiri Mehr, Farokh Izadpour, Mohammad Mehdi Feizabadi | | PLOS ONE. 2021; 16(11): e0259512 | | [Pubmed] | [DOI] | | 105 |
Is Cefoxitin a Carbapenem Sparing Agent in the Management of Urinary Tract Infections Caused by ESBL Producing Enterobacterales? |
|
| Wasim S. El Nekidy, Manal M. Abdelsalam, Ahmad R. Nusair, Rania El Lababidi, Ruba Z. Dajani, Terrence J. Lee St. John, Islam M. Ghazi | | Hospital Pharmacy. 2021; : 0018578721 | | [Pubmed] | [DOI] | | 106 |
Occurrence of extended-spectrum ß-lactamase and AmpC-producing Escherichia coli in retail meat products from the Maritime Provinces, Canada |
|
| Babafela Awosile, Jessica Eisnor, Matthew E. Saab, Luke Heider, J T. McClure | | Canadian Journal of Microbiology. 2021; 67(7): 537 | | [Pubmed] | [DOI] | | 107 |
Salmonella from Farm to Table: Isolation, Characterization, and Antimicrobial Resistance of Salmonella from Commercial Broiler Supply Chain and Its Environment |
|
| M. Nasim Sohail, D. Rathnamma, S. Chandra Priya, S. Isloor, H. D. Naryanaswamy, S. Wilfred Ruban, B. M. Veeregowda, Stefania Cantore | | BioMed Research International. 2021; 2021: 1 | | [Pubmed] | [DOI] | | 108 |
A One-Health Genomic Investigation of Gentamicin Resistance in Salmonella from Human and Chicken Sources in Canada, 2014 to 2017 |
|
| Graham W. Cox, E. Jane Parmley, Brent P. Avery, Rebecca J. Irwin, Richard J. Reid-Smith, Anne E. Deckert, Rita L. Finley, Danielle Daignault, David C. Alexander, Vanessa Allen, Sameh El Bailey, Sadjia Bekal, Linda Chui, Greg J. German, David Haldane, Linda Hoang, Jessica Minion, George Zahariadis, Michael R. Mulvey, Amrita Bharat | | Antimicrobial Agents and Chemotherapy. 2021; 65(12) | | [Pubmed] | [DOI] | | 109 |
The Genotype-to-Phenotype Dilemma: How Should Laboratories Approach Discordant Susceptibility Results? |
|
| Rebecca Yee, Jennifer Dien Bard, Patricia J. Simner, Alexander J. McAdam | | Journal of Clinical Microbiology. 2021; 59(6) | | [Pubmed] | [DOI] | | 110 |
Isolation and characterization of multidrug-resistant
Klebsiella
pneumoniae
from raw cow milk in Jiangsu and Shandong provinces, China
|
|
| Yi Yang, Yalan Peng, Jingyi Jiang, Zaicheng Gong, Hao Zhu, Kun Wang, Qiaoni Zhou, Yu Tian, Aijian Qin, Zhangping Yang, Shaobin Shang | | Transboundary and Emerging Diseases. 2021; 68(3): 1033 | | [Pubmed] | [DOI] | | 111 |
First report of cross resistance to silver and antibiotics in
Klebsiella pneumoniae
isolated from patients and polluted water in Tunisia
|
|
| Samar Ben Miloud, Md Muntasir Ali, Ilhem Boutiba, Rob Van Houdt, Chedly Chouchani | | Water and Environment Journal. 2021; 35(2): 730 | | [Pubmed] | [DOI] | | 112 |
Structural Basis and Binding Kinetics of Vaborbactam in Class A ß-Lactamase Inhibition |
|
| Orville A. Pemberton, Ruslan Tsivkovski, Maxim Totrov, Olga Lomovskaya, Yu Chen | | Antimicrobial Agents and Chemotherapy. 2020; 64(10) | | [Pubmed] | [DOI] | | 113 |
Multi-drug resistant and extended-spectrum ß-lactamases producing bacterial uropathogens among pregnant women in Northwest Ethiopia |
|
| Sirak Biset, Feleke Moges, Demeke Endalamaw, Setegn Eshetie | | Annals of Clinical Microbiology and Antimicrobials. 2020; 19(1) | | [Pubmed] | [DOI] | | 114 |
High rate of extended-spectrum beta-lactamase-producing gram-negative infections and associated mortality in Ethiopia: a systematic review and meta-analysis |
|
| Tafese B. Tufa, Andre Fuchs, Takele B. Tufa, Loraine Stötter, Achim J. Kaasch, Torsten Feldt, Dieter Häussinger, Colin R. Mackenzie | | Antimicrobial Resistance & Infection Control. 2020; 9(1) | | [Pubmed] | [DOI] | | 115 |
Genetic diversity and risk factors for the transmission of antimicrobial resistance across human, animals and environmental compartments in East Africa: a review |
|
| Bugwesa Z. Katale, Gerald Misinzo, Stephen E. Mshana, Harriet Chiyangi, Susana Campino, Taane G. Clark, Liam Good, Mark M. Rweyemamu, Mecky I. Matee | | Antimicrobial Resistance & Infection Control. 2020; 9(1) | | [Pubmed] | [DOI] | | 116 |
Occurrence, identification, and antibiogram signatures of selected Enterobacteriaceae from Tsomo and Tyhume rivers in the Eastern Cape Province, Republic of South Africa |
|
| Folake Temitope Fadare, Martins Ajibade Adefisoye, Anthony Ifeanyi Okoh, Iddya Karunasagar | | PLOS ONE. 2020; 15(12): e0238084 | | [Pubmed] | [DOI] | | 117 |
Efficacy of six disinfection methods against extended-spectrum beta-lactamase (ESBL) producing E. coli on eggshells in vitro |
|
| Gerzon Motola, Hafez Mohamed Hafez, Sarah Brüggemann-Schwarze, Arda Yildirim | | PLOS ONE. 2020; 15(9): e0238860 | | [Pubmed] | [DOI] | | 118 |
Extended-spectrum Beta-lactamase and AmpC beta-lactamases producing gram negative bacilli isolated from clinical specimens at International Clinical Laboratories, Addis Ababa, Ethiopia |
|
| Saba Gebremichael Tekele, Dejenie Shiferaw Teklu, Kassu Desta Tullu, Samuel Kinde Birru, Melese Hailu Legese, Grzegorz Wo?niakowski | | PLOS ONE. 2020; 15(11): e0241984 | | [Pubmed] | [DOI] | | 119 |
Comparative bateriological profile with antibiotic resistance pattern among diabetic and non-diabetic patients |
|
| Kavitha E, R Sree Naga Sowndary | | Indian Journal of Microbiology Research. 2020; 7(2): 207 | | [Pubmed] | [DOI] | | 120 |
Characterization of Extended-Spectrum ß-Lactamase-Producing Uropathogenic Escherichia coli Among Iranian Kidney Transplant Patients |
|
| Mehrdad Halaji, Shahrzad Shahidi, Abdolamir Atapour, Behrooz Ataei, Awat Feizi, Seyed Asghar Havaei | | Infection and Drug Resistance. 2020; Volume 13: 1429 | | [Pubmed] | [DOI] | | 121 |
Detection of OXA-48 Gene in Carbapenem-Resistant Escherichia coli and Klebsiella pneumoniae from Urine Samples |
|
| Sushma Gurung, Sonali Kafle, Binod Dhungel, Nabaraj Adhikari, Upendra Thapa Shrestha, Bipin Adhikari, Megha Raj Banjara, Komal Raj Rijal, Prakash Ghimire | | Infection and Drug Resistance. 2020; Volume 13: 2311 | | [Pubmed] | [DOI] | | 122 |
Multidrug-resistant Acinetobacter baumannii outbreaks: a global problem in healthcare settings |
|
| Mariana Neri Lucas Kurihara, Romário Oliveira de Sales, Késia Esther da Silva, Wirlaine Glauce Maciel, Simone Simionatto | | Revista da Sociedade Brasileira de Medicina Tropical. 2020; 53 | | [Pubmed] | [DOI] | | 123 |
Occurrence and Characteristics of the Extended-spectrum Beta-lactamase-producing Enterobacterale in a Hospital Setting |
|
| Salah H. Elsafi | | The Open Microbiology Journal. 2020; 14(1): 190 | | [Pubmed] | [DOI] | | 124 |
Occurrence of ESBLs in Clinical Isolates of Klebsiella Species and Comparative Analysis of Phenotypic Detection Methods |
|
| Taqdees Malik, Asma Naim | | Anti-Infective Agents. 2020; 18(3): 255 | | [Pubmed] | [DOI] | | 125 |
Antimicrobial-resistant Shiga-toxin producing Escherichia coli Isolated from Ready-to-Eat Meat Products and Fermented Milk Sold in the Formal and Informal Sectors in Harare, Zimbabwe |
|
| Wardner Munashe Gweshe, Tinashe Muteveri, Claudious Gufe, Jerikias Marumure, Tinashe Canaan Hodobo | | Journal of Pure and Applied Microbiology. 2020; 14(2): 1157 | | [Pubmed] | [DOI] | | 126 |
Extended-spectrum beta-lactamase (ESBL)-positive Escherichia coli presence in urban aquatic environments in Kanpur, India |
|
| Ann Johnson, Olivia Ginn, Aaron Bivins, Lucas Rocha-Melogno, Sachchida Nand Tripathi, Joe Brown | | Journal of Water and Health. 2020; 18(5): 849 | | [Pubmed] | [DOI] | | 127 |
Carbapenem Resistant Enterobacteriaceae in Africa |
|
| Bashar Haruna Gulumbe, Olumide Ajibola | | Borneo Journal of Pharmacy. 2020; 3(2): 71 | | [Pubmed] | [DOI] | | 128 |
The impact of Grammosciadium platycarpum Boiss. & Hausskn. extract on oqxA efflux pump gene expression in antibiotic resistant clinical isolates of Klebsiella pneumoniae using real time PCR |
|
| Faezeh Mohammadpour Bishak, Fatemeh Ashrafi, Soheila Moradi Bidhendi, Amir Mirzaie, Hassan Noorbazargan | | Journal of Medicinal Plants. 2020; 19(75): 291 | | [Pubmed] | [DOI] | | 129 |
The multidrug resistance and production of extended-spectrum beta-lactamases ctx-m, per and ver in Escherichia coli isolates derived from raw dairy samples |
|
| Pouria Khodavandi, Fahimeh Alizadeh, Alireza Khodavandi | | Nova Biologica Reperta. 2020; 7(1): 46 | | [Pubmed] | [DOI] | | 130 |
Prevalence and Molecular Characteristics of Extended-Spectrum and AmpC ß-Lactamase Producing Escherichia coli in Grazing Beef Cattle |
|
| Shinyoung Lee, Lin Teng, Nicolas DiLorenzo, Thomas A. Weppelmann, Kwangcheol Casey Jeong | | Frontiers in Microbiology. 2020; 10 | | [Pubmed] | [DOI] | | 131 |
Exploring the Potential of CRISPR-Cas9 Under Challenging Conditions: Facing High-Copy Plasmids and Counteracting Beta-Lactam Resistance in Clinical Strains of Enterobacteriaceae |
|
| Thaysa Leite Tagliaferri, Natália Rocha Guimarães, Marcella de Paula Martins Pereira, Liza Figueiredo Felicori Vilela, Hans-Peter Horz, Simone Gonçalves dos Santos, Tiago Antônio de Oliveira Mendes | | Frontiers in Microbiology. 2020; 11 | | [Pubmed] | [DOI] | | 132 |
Characterization of KPC-Producing Serratia marcescens in an Intensive Care Unit of a Brazilian Tertiary Hospital |
|
| Roumayne L. Ferreira, Graziela S. Rezende, Marcelo Silva Folhas Damas, Mariana Oliveira-Silva, André Pitondo-Silva, Márcia C. A. Brito, Eduardo Leonardecz, Fabiana R. de Góes, Emeline Boni Campanini, Iran Malavazi, Anderson F. da Cunha, Maria-Cristina da Silva Pranchevicius | | Frontiers in Microbiology. 2020; 11 | | [Pubmed] | [DOI] | | 133 |
A Preliminary Study: Antibiotic Resistance Patterns of Escherichia coli and Enterococcus Species from Wildlife Species Subjected to Supplementary Feeding on Various South African Farms |
|
| Michaela Sannettha van den Honert, Pieter Andries Gouws, Louwrens Christiaan Hoffman | | Animals. 2020; 10(3): 396 | | [Pubmed] | [DOI] | | 134 |
Escherichia coli as Commensal and Pathogenic Bacteria among Food-Producing Animals: Health Implications of Extended Spectrum ß-Lactamase (ESBL) Production |
|
| Sónia Ramos, Vanessa Silva, Maria de Lurdes Enes Dapkevicius, Manuela Caniça, María Teresa Tejedor-Junco, Gilberto Igrejas, Patrícia Poeta | | Animals. 2020; 10(12): 2239 | | [Pubmed] | [DOI] | | 135 |
Ready-to-eat street food: a potential source for dissemination of multidrug-resistant
Escherichia coli
epidemic clones in Quito, Ecuador
|
|
| J. Zurita, F. Yánez, G. Sevillano, D. Ortega-Paredes, A. Paz y Miño | | Letters in Applied Microbiology. 2020; 70(3): 203 | | [Pubmed] | [DOI] | | 136 |
Role of SHV-11, a Class A ß-Lactamase, Gene in Multidrug Resistance Among Klebsiella pneumoniae Strains and Understanding Its Mechanism by Gene Network Analysis |
|
| Sravan Kumar Miryala, Anand Anbarasu, Sudha Ramaiah | | Microbial Drug Resistance. 2020; 26(8): 900 | | [Pubmed] | [DOI] | | 137 |
The burden of extended-spectrum ß-lactamase-producing Enterobacteriaceae in Nigeria: a systematic review and meta-analysis |
|
| Baba M Musa, Hassana Imam, Anastasia Lendel, Isa Abdulkadir, Halima S Gumi, Muktar H Aliyu, Abdulrazaq G Habib | | Transactions of The Royal Society of Tropical Medicine and Hygiene. 2020; 114(4): 241 | | [Pubmed] | [DOI] | | 138 |
Phenotypic synergy testing of ceftazidime–avibactam with aztreonam in a university hospital having high number of metallobetalactamase producing bacteria |
|
| Chinmoy Sahu, Sourav Pal, Sangram Singh Patel, Sanjay Singh, Mohan Gurjar, Ujjala Ghoshal | | Infectious Diseases. 2020; 52(11): 801 | | [Pubmed] | [DOI] | | 139 |
Paper-based analytical devices for colorimetric detection of S. aureus and E. coli and their antibiotic resistant strains in milk |
|
| Muhammad Asif, Fazli Rabbi Awan, Qaiser Mahmood Khan, Bongkot Ngamsom, Nicole Pamme | | The Analyst. 2020; 145(22): 7320 | | [Pubmed] | [DOI] | | 140 |
High prevalence of blaCMY AmpC beta-lactamase in ESBL co-producing Escherichia coli and Klebsiella spp. clinical isolates in the northeast of Iran |
|
| Kobra Salimiyan Rizi, Arman Mosavat, Masoud Youssefi, Saeid Amel Jamehdar, Kiarash Ghazvini, Hadi Safdari, Yousef Amini, Hadi Farsiani | | Journal of Global Antimicrobial Resistance. 2020; 22: 477 | | [Pubmed] | [DOI] | | 141 |
Raw wastewater irrigation for urban agriculture in three African cities increases the abundance of transferable antibiotic resistance genes in soil, including those encoding extended spectrum ß-lactamases (ESBLs) |
|
| B.P. Bougnom, S. Thiele-Bruhn, V. Ricci, C. Zongo, L.J.V. Piddock | | Science of The Total Environment. 2020; 698: 134201 | | [Pubmed] | [DOI] | | 142 |
Pharmacokinetic/Pharmacodynamic Determination and Preclinical Pharmacokinetics of the ß-Lactamase Inhibitor ETX1317 and Its Orally Available Prodrug ETX0282 |
|
| John O’Donnell, Angela Tanudra, April Chen, Daniel Hines, Ruben Tommasi, John Mueller | | ACS Infectious Diseases. 2020; 6(6): 1378 | | [Pubmed] | [DOI] | | 143 |
Molecular characterization of multidrug-resistant avian pathogenic Escherichia coli from broiler chickens in Korea |
|
| Y.B. Kim, M.Y. Yoon, K.W. Seo, S. Yoon, Y.J. Lee | | Journal of Applied Poultry Research. 2020; 29(4): 1101 | | [Pubmed] | [DOI] | | 144 |
Molecular characterisation of csgA gene among ESBL strains of A. baumannii and targeting with essential oil compounds from Azadirachta indica |
|
| Anu Iswarya Jaisankar, A.S. Smiline Girija, Shoba Gunasekaran, J. Vijayashree Priyadharsini | | Journal of King Saud University - Science. 2020; 32(8): 3380 | | [Pubmed] | [DOI] | | 145 |
The role of the natural aquatic environment in the dissemination of extended spectrum beta-lactamase and carbapenemase encoding genes: A scoping review |
|
| Brigid Hooban, Aoife Joyce, Kelly Fitzhenry, Carlos Chique, Dearbháile Morris | | Water Research. 2020; 180: 115880 | | [Pubmed] | [DOI] | | 146 |
Cell-based internal standard for qPCR determinations of antibiotic resistance indicators in environmental water samples |
|
| Jaqueline Rocha, Célia M. Manaia | | Ecological Indicators. 2020; 113: 106194 | | [Pubmed] | [DOI] | | 147 |
Evaluating the antimicrobial resistance and frequency of AmpC ß-lactamases bla gene in Gram-negative bacteria isolates collected from selected hospitals of Iran: A multicenter retrospective study |
|
| Fatemeh Fallah, Taher Azimi, Leila Azimi, Abdollah Karimi, Mohammad Rahbar, Mehdi Shirdoust, Iraj Sedighi, Ata Saadat Sadeghi, Shahnaz Armin | | Gene Reports. 2020; 21: 100868 | | [Pubmed] | [DOI] | | 148 |
Recent advances in the development of ß-lactamase inhibitors |
|
| Shivakumar S. Jalde, Hyun Kyung Choi | | Journal of Microbiology. 2020; 58(8): 633 | | [Pubmed] | [DOI] | | 149 |
Effects of Glycyrrhizin on Multi-Drug Resistant Pseudomonas aeruginosa |
|
| Nicholas J. Carruthers, Sharon A. McClellan, Mallika Somayajulu, Ahalya Pitchaikannu, Denise Bessert, Xudong Peng, Kylie Huitsing, Paul M. Stemmer, Linda D. Hazlett | | Pathogens. 2020; 9(9): 766 | | [Pubmed] | [DOI] | | 150 |
Antimicrobial Resistance Traits of Escherichia coli Isolated from Dairy Manure and Freshwater Ecosystems Are Similar to One Another but Differ from Associated Clinical Isolates |
|
| Rachelle E. Beattie, Ellen Bakke, Nicholas Konopek, Rebecca Thill, Erik Munson, Krassimira R. Hristova | | Microorganisms. 2020; 8(5): 747 | | [Pubmed] | [DOI] | | 151 |
Transferable Extended-Spectrum ß-Lactamase (ESBL) Plasmids in Enterobacteriaceae from Irrigation Water |
|
| Maria-Theresia Gekenidis, Anita Kläui, Kornelia Smalla, David Drissner | | Microorganisms. 2020; 8(7): 978 | | [Pubmed] | [DOI] | | 152 |
Antibiotic Sensitivity Screening of Klebsiella spp. and Raoultella spp. Isolated from Marine Bivalve Molluscs Reveal Presence of CTX-M-Producing K. pneumoniae |
|
| Fredrik Håkonsholm, Marit A. K. Hetland, Cecilie S. Svanevik, Arnfinn Sundsfjord, Bjørn Tore Lunestad, Nachiket P. Marathe | | Microorganisms. 2020; 8(12): 1909 | | [Pubmed] | [DOI] | | 153 |
Beta-Lactam Sensitive Bacteria Can Acquire ESBL-Resistance via Conjugation after Long-Term Exposure to Lethal Antibiotic Concentration |
|
| Pilvi Ruotsalainen, Cindy Given, Reetta Penttinen, Matti Jalasvuori | | Antibiotics. 2020; 9(6): 296 | | [Pubmed] | [DOI] | | 154 |
Prevalence and Antibiotic Resistance of ESKAPE Pathogens Isolated in the Emergency Department of a Tertiary Care Teaching Hospital in Hungary: A 5-Year Retrospective Survey |
|
| Ria Benko, Márió Gajdács, Mária Matuz, Gabriella Bodó, Andrea Lázár, Edit Hajdú, Erika Papfalvi, Peter Hannauer, Péter Erdélyi, Zoltán Peto | | Antibiotics. 2020; 9(9): 624 | | [Pubmed] | [DOI] | | 155 |
Sepsis—A Retrospective Cohort Study of Bloodstream Infections |
|
| Biagio Santella, Veronica Folliero, Gerarda Maria Pirofalo, Enrica Serretiello, Carla Zannella, Giuseppina Moccia, Emanuela Santoro, Giuseppina Sanna, Oriana Motta, Francesco De Caro, Pasquale Pagliano, Mario Capunzo, Massimiliano Galdiero, Giovanni Boccia, Gianluigi Franci | | Antibiotics. 2020; 9(12): 851 | | [Pubmed] | [DOI] | | 156 |
Effects of Appropriate Use of Oral Third-Generation Cephalosporin and Intravenous Antibiotics Use in Pediatric Urology Perioperative Period |
|
| Ryoko Watanabe, Shogo Otake, Keigo Isomoto, Nobuyuki Terasaki, Tatsuhiko Ishida, Naomi Kakio, Masashi Kasai, Yumiko Fukui | | Iryo Yakugaku (Japanese Journal of Pharmaceutical Health Care and Sciences). 2020; 46(12): 732 | | [Pubmed] | [DOI] | | 157 |
Detection of mcr-1 Gene in Extended-Spectrum ß-Lactamase-Producing Klebsiella pneumoniae From Human Urine Samples in Pakistan |
|
| Hazrat Bilal, Fareeha Hameed, Muhammad Asif Khan, Sabir Khan, Xingyuan Yang, Tayyab Ur Rehman | | Jundishapur Journal of Microbiology. 2020; 13(4) | | [Pubmed] | [DOI] | | 158 |
Antimicrobial resistance: Call for rational antibiotics practice in India |
|
| Shivani Chandra, PP R Prithvi, K Srija, Shalini Jauhari, Alka Grover | | Journal of Family Medicine and Primary Care. 2020; 9(5): 2192 | | [Pubmed] | [DOI] | | 159 |
Multidrug resistant and ESBL-producing Salmonella spp. isolated from poultry |
|
| Marielen de Souza, Daniela Aguiar Penha Brito, Maísa Fabiana Menck-Costa, Alexandre Oba, Renata Katsuko Takayama Kobayashi, Larissa Justino, Ana Angelita Sampaio Baptista | | Semina: Ciências Agrárias. 2019; 40(6Supl2): 3045 | | [Pubmed] | [DOI] | | 160 |
Distribution of clinically relevant antibiotic resistance genes in Lake Tai, China |
|
| C. Stange, D. Yin, T. Xu, X. Guo, C. Schäfer, A. Tiehm | | Science of The Total Environment. 2019; 655: 337 | | [Pubmed] | [DOI] | | 161 |
Gut Microbiota Alteration is Characterized by a Proteobacteria and Fusobacteria Bloom in Kwashiorkor and a Bacteroidetes Paucity in Marasmus |
|
| Thi-Phuong-Thao Pham, Maryam Tidjani Alou, Dipankar Bachar, Anthony Levasseur, Souleymane Brah, Daouda Alhousseini, Cheikh Sokhna, Aldiouma Diallo, Frank Wieringa, Matthieu Million, Didier Raoult | | Scientific Reports. 2019; 9(1) | | [Pubmed] | [DOI] | | 162 |
The Occurrence and Characterization of Extended-Spectrum-Beta-Lactamase-Producing Escherichia coli Isolated from Clinical Diagnostic Specimens of Equine Origin |
|
| Leta Elias, David C. Gillis, Tanya Gurrola-Rodriguez, Jeong Ho Jeon, Jung Hun Lee, Tae Yeong Kim, Sang Hee Lee, Sarah A. Murray, Naomi Ohta, Harvey Morgan Scott, Jing Wu, Artem S. Rogovskyy | | Animals. 2019; 10(1): 28 | | [Pubmed] | [DOI] | | 163 |
Prevalence of Extended Spectrum Beta Lactamase Producing Bacteria in Two Surgical Wards of a General Hospital |
|
| Baiba Zandersone, Elita Medvedja, Arnolds Jezupovs, Iveta Liduma, Solvita Selderina, Sandra Leja, Sintija Sausa, Tatjana Tracevska | | Proceedings of the Latvian Academy of Sciences. Section B. Natural, Exact, and Applied Sciences.. 2019; 73(1): 40 | | [Pubmed] | [DOI] | | 164 |
Multidrug-resistant bacteria |
|
| Luciana Sowole, Damien K Ming, Frances Davies | | British Journal of Hospital Medicine. 2018; 79(5): C66 | | [Pubmed] | [DOI] | | 165 |
Application of six multiplex PCR's among 200 clinical isolates of
Pseudomonas aeruginosa
for the detection of 20 drug resistance encoding genes
|
|
| Nandagopal Murugan, Jambulingam Malathi, K Lily Therese, Hajib NarahariRao Madhavan | | The Kaohsiung Journal of Medical Sciences. 2018; 34(2): 79 | | [Pubmed] | [DOI] | | 166 |
Newer ß-Lactam/ß-Lactamase Inhibitor for Multidrug-Resistant Gram-Negative Infections: Challenges, Implications and Surveillance Strategy for India |
|
| Balaji Veeraraghavan, Agila Kumari Pragasam, Yamuna Devi Bakthavatchalam, Shalini Anandan, V Ramasubramanian, Subramanian Swaminathan, Ram Gopalakrishnan, Rajeev Soman, OC Abraham, Vinod C Ohri, Kamini Walia | | Indian Journal of Medical Microbiology. 2018; 36(3): 334 | | [Pubmed] | [DOI] | | 167 |
Antibiotics as a selective driver for conjugation dynamics |
|
| Allison J. Lopatkin, Shuqiang Huang, Robert P. Smith, Jaydeep K. Srimani, Tatyana A. Sysoeva, Sharon Bewick, David K. Karig, Lingchong You | | Nature Microbiology. 2016; 1(6) | | [Pubmed] | [DOI] | | 168 |
Drug resistance in bacteria isolated from patients presenting with wounds at a non-profit Surgical Center in Phnom Penh, Cambodia from 2011–2013 |
|
| Boren Hout, Chamroeun Oum, Putheavy Men, Vanvathanak Vanny, Chonthida Supaprom, Vireak Heang, Agus Rachmat, Michael Prouty, Steven Newell, Dustin Harrison, Saqib Noor, James Gollogly, Ly Tho, Yong June Kim, Gavin Ford | | Tropical Diseases, Travel Medicine and Vaccines. 2015; 1(1) | | [Pubmed] | [DOI] | | 169 |
Co-existence of beta-lactamases in clinical isolates of Escherichia coli from Kathmandu, Nepal |
|
| Ram Pokhrel,Badri Thapa,Rajesh Kafle,Pradeep Shah,Chanwit Tribuddharat | | BMC Research Notes. 2014; 7(1): 694 | | [Pubmed] | [DOI] | | 170 |
Antimicrobial activity of cefepime–tazobactam combination tested against clinical isolates of Enterobacteriaceae |
|
| Ramanpreet Kaur,Vikas Gautam,Lipika Singhal,Pallab Ray | | The Journal of Antibiotics. 2014; | | [Pubmed] | [DOI] | | 171 |
Prevalence of antimicrobial resistance in enteric Escherichia coli from domestic pets and assessment of associated risk markers using a generalized linear mixed model |
|
| Liliana R. Leite-Martins,Maria I.M. Mahú,Ana L. Costa,Ângelo Mendes,Elisabete Lopes,Denisa M.V. Mendonça,João J.R. Niza-Ribeiro,Augusto J.F. de Matos,Paulo Martins da Costa | | Preventive Veterinary Medicine. 2014; | | [Pubmed] | [DOI] | | 172 |
Surveillance of ESBL producing multidrug resistant Escherichia coli in a teaching hospital in India |
|
| Shakti Rath,Debasmita Dubey,Mahesh C. Sahu,Nagen K. Debata,Rabindra N. Padhy | | Asian Pacific Journal of Tropical Disease. 2014; 4(2): 140 | | [Pubmed] | [DOI] | | 173 |
Anti-ESBL activity of silver nanoparticles biosynthesized using soil Streptomyces species |
|
| Jasmine Subashini,V. Gopiesh Khanna,K. Kannabiran | | Bioprocess and Biosystems Engineering. 2014; 37(6): 999 | | [Pubmed] | [DOI] | | 174 |
Analyse rétrospective de l’antibiothérapie probabiliste des infections respiratoires basses chez des patients admis aux urgences du centre hospitalier Louis-Jaillon (Saint-Claude, France) |
|
| J.F. Carod,N. Floret,B. Draou,V. Daucourt,A. Sakho,E. Blanc,J.F. Faucher,J. Leroy | | Journal Européen des Urgences et de Réanimation. 2013; | | [Pubmed] | [DOI] | | 175 |
The impact of antibiotic use on the incidence and resistance pattern of extended-spectrum beta-lactamase-producing bacteria in primary and secondary healthcare settings |
|
| Mamoon A. Aldeyab,Stephan Harbarth,Nathalie Vernaz,Mary P. Kearney,Michael G. Scott,Feras W. Darwish Elhajji,Motasem A. Aldiab,James C. McElnay | | British Journal of Clinical Pharmacology. 2012; 74(1): 171 | | [Pubmed] | [DOI] | | 176 |
Will new antimicrobials overcome resistance among Gram-negatives? |
|
| Matteo Bassetti,Francesca Ginocchio,Malgorzata Mikulska,Lucia Taramasso,Daniele Roberto Giacobbe | | Expert Review of Anti-infective Therapy. 2011; 9(10): 909 | | [Pubmed] | [DOI] | | 177 |
Development of antibiotics for Gram-negatives: where now? |
|
| Matteo Bassetti,Francesca Ginocchio,Daniele Roberto Giacobbe,Malgorzata Mikulska | | Clinical Investigation. 2011; 1(2): 211 | | [Pubmed] | [DOI] | |
|
|
 |
 |
|
|
|
|