Journal of Global Infectious DiseasesOfficial Publishing of INDUSEM and OPUS 12 Foundation, Inc. Users online:807  
Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size     
Home About us Editors Ahead of Print Current Issue Archives Search Instructions Subscribe Advertise Login 
 
ORIGINAL ARTICLE
Year : 2019  |  Volume : 11  |  Issue : 3  |  Page : 118-122

Hemoglobin S and glucose-6-phosphate dehydrogenase deficiency coinheritance in AS and SS individuals in malaria-endemic region: A study in Calabar, Nigeria


Department of Medical Laboratory Science, Hematology Unit, College of Medical Sciences, University of Calabar, Calabar, Nigeria

Correspondence Address:
Dr. Ifeyinwa M Okafor
Department of Medical Laboratory Science, Hematology Unit, College of Medical Sciences, University of Calabar, Calabar
Nigeria
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jgid.jgid_154_18

Rights and Permissions

Background: Malaria placed a huge burden on human life and has been reported to be a key health problem affecting developing countries. This study was designed to assay for glucose-6-phosphate dehydrogenase (G6PD) status and malaria parasite density of individuals with sickle cell gene in University of Calabar Teaching Hospital, Calabar. Subjects and Methods: The methemoglobin method was used to determine the G6PD status. Thick blood films were used to ascertain the malaria parasite density while hemoglobin genotype was determined using cellulose acetate paper electrophoresis with tris ethylenediaminetetracetic acid borate buffer (pH 8.6). Thirty hemoglobin SS (HbSS) and 30 hemoglobin AS (HbAS) individuals were recruited for the study while 30 hemoglobin AA (HbAA) individuals were recruited as control. Results: The study showed a high frequency of G6PD deficiency (17.78%) in the study area while G6PD deficiency was significantly (P < 0.05) higher in HbAA individuals (33.33%) when compared to HbSS (10.00%) and HbAS (10.00%) individuals. The prevalence of malaria parasitemia and parasite density was comparable in the three hemoglobin variants. The distribution of malaria parasitemia and parasite density in both gender among the various hemoglobin variants showed no association (P > 0.05). G6PD deficiency distribution in both gender were found to be comparable (P > 0.05). The distribution of malaria parasitemia in the various hemoglobin variants in the G6PD-deficient individuals showed no significant difference (P > 0.5). However, the parasite density of the HbAS (3100 ± 1828.48 μL) and HbSS (2400 ± 1687.06 μL) were significantly lower than that of HbAA (4040 ± 1529.44 μL). Conclusion: The result of this study supports the hypothesis that inheriting the G6PD deficiency gene and sickle cell gene (both in homozygous and heterozygous form) reduces the severity of malaria parasite infection and hence protects against severe acute malaria while having less effect on infection.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed107    
    Printed1    
    Emailed0    
    PDF Downloaded0    
    Comments [Add]    

Recommend this journal

 

Sitemap | What's New | Feedback | Copyright and Disclaimer | Contact Us
2008 Journal of Global Infectious Diseases | Published by Wolters Kluwer - Medknow
Online since 10th December, 2008